首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Group 5 metal complexes [M(eta5-C5H5)[eta5-C5H4SiMe2(CH2-eta]2-CH=CH2)]X] (M = Nb, X = Me, CH2Ph, CH2SiMe3; M = Ta, X = Me, CH2Ph) and [Ta(eta5-C5Me5)[eta5-C5H4SiMe2(CH2-eta2-CH=CH2)]X] (X = Cl, Me, CH2Ph, CH2SiMe3) containing a chelating alkene ligand tethered to a cyclopentadienyl ring have been synthesized in high yields by reduction with Na/Hg (X = Cl) and alkylation with reductive elimination (X = alkyl) of the corresponding metal(iv) dichlorides [M(eta5-Cp)[eta5-C5H4SiMe2(CH2CH=CH2)]Cl2] (Cp = C5H5, M = Nb, Ta, Cp = C5Me5, M = Ta). These chloro- and alkyl-alkene coordinated complexes react with CO and isocyanides [CNtBu, CN(2,6-Me2C6H3)] to give the ligand-substituted metal(III) compounds [M(eta5-Cp)[eta5-C5H4SiMe2(CH2CH=CH2)]XL] (X = Cl, Me, CH2Ph, CH2SiMe3). Reaction of the chloro-alkene tantalum complex with LiNHtBu results in formation of the imido hydride derivative [Ta(eta5-C5Me5)[eta5-C5H4SiMe2(CH2CH=CH2)]H(NtBu)]. NMR studies for all of the new compounds and DFT calculations for the alkene-coordinated metal complexes are compared with those known for related group 4 metal cations.  相似文献   

2.
Trialkyl imido niobium and tantalum complexes [MR(3)(NtBu)] (M = Nb, R = Me 2, CH(2)CMe(3)3, CH(2)CMe(2)Ph 4, CH(2)SiMe(3)5; M = Ta, R = Me 6, CH(2)CMe(2)Ph 7, CH(2)SiMe(3)8) have been prepared by treatment of solutions containing [MCl(3)(NtBu)py(2)] (M = Nb 1a, Ta 1b) with three equivalents of magnesium reagent. By an unexpected hydrolysis reaction of the tris-trimethylsilylmethyl imido tantalum compound 8a, a μ-oxo derivative [(Me(3)SiCH(2)O)(Me(3)SiCH(2))(3)Ta(μ-O)Ta(CH(2)SiMe(3))(2)(NtBu)] (8a) was formed and its structure was studied by X-ray diffraction methods. Reactions of trialkyl imido compounds with two equivalents of isocyanide 2,6-Me(2)C(6)H(3)NC result in the migration of two alkyl groups, leading to the formation of a series of alkyl imido bisiminoacyl derivatives [MR(NtBu){C(R)NAr}(2)] (Ar = 2,6-Me(2)C(6)H(3); M = Nb, R = Me 9, CH(2)CMe(3)10, CH(2)CMe(2)Ph 11, CH(2)SiMe(3)12, CH(2)Ph 13; M = Ta, R = CH(2)CMe(3)14, CH(2)CMe(2)Ph 15, CH(2)SiMe(3)16). All compounds were studied by IR and NMR ((1)H, (13)C and (15)N) spectroscopy.  相似文献   

3.
The reactions between [M(NO){HB(3,5-Me2C3HN2)3}X2] (M = Mo, X = Cl, Br, I; M = W, X = Cl) and the monosaccharides 2,3:4,5-di-O-iso-propylidene-β- -fructopyranose, 2,3:5,6-di-O-isopropylidene-- -mannofuranose, methyl-- -glucopyranoside and -(+)-mannofuranose have been investigated and the complexes [M(NO){HB(3,5- Me2C3HN2)3}X(OR)] (M = Mo, X = Cl, Br, I; M = W, X = Cl; ROH = 2,3:4,5-di-O- isopropylidene-β- -fructopyranose) have been isolated as mixtures of diastereoisomers.  相似文献   

4.
Anilines with alkyl substituents on the phenyl ring (ArNH2 = 2,4,6-trimethylaniline; 2,3-, 2,4-, 2,6-, and 3,4-dimethylaniline; and 2,6-diisopropylaniline) react with MoO(X)2(dtc)2 (X = Cl or Br; dtc = diethyldithiocarbamate) in methanol in the presence of 2 equiv of triethylamine to form ionic imido complexes of the type [MoNAr(dtc)3]2[Mo6O19] or MoNAr(dtc)3]4[Mo8O26]. The same reaction in THF with butyllithium as base yields imido complexes of the type MoNAr(X)2(dtc)2. The structures of three ionic, five chloro, and two bromo complexes have been determined by X-ray crystallography. In all complexes, the molybenum center is a distorted pentagonal bipyramid. While the structures are similar, the angles of the imido linkages differ. The effect of the substituents on the phenyl ring of the imido ligand on the 95Mo NMR chemical shifts was determined. The Mo nucleus becomes more deshielded with the substituents in the following order: 3,4-Me2 < 2,3-Me2 < 2,4-Me2 < 2,6-Me2 < 2,4,6-Me3 < 2,6 isopropyl. Complexes with more deshielded 95Mo centers tend to have angles of the imido linkage that are closer to 180 degrees.  相似文献   

5.
Unprecedented imido phthalocyaninato complexes of pentavalent refractory metals [PcM(NR)Cl] (M = Mo, W, Re; R = tBu: 1, 3, 6, Mes: 2, 4, 7 or Ts: 5) have been synthesized by reductive cyclotetramerization of phthalonitrile in the presence of appropriate bis(imido) complexes of Mo, W and Re as templates. While d(1) Mo(V) and W(V) species 1-5 show distinctive EPR spectra corresponding to metal centered radicals with hyperfine coupling of two magnetically non-equivalent nitrogen atoms (4 equatorial and 1 axial N), corresponding d(2) Re(V) compounds 6 and 7 are diamagnetic. [PcMo(NtBu)Cl] 1 crystallizes from 1-chloronaphthalene in the tetragonal space group P4/n. The molecular structure reveals, that the metal center is located above the plane of the equatorial N4 and displaced towards the axial π-donor ligand. Due to the thermodynamic trans effect the Mo-Cl bond trans to the imido group is elongated to about 2.600(2) ?.  相似文献   

6.
Pseudooctahedral complexes [MCl(3)(NtBu)L(2)] (M = Nb, L = py 1, ? tmeda 3; M = Ta, L = py 2, ? tmeda 4) have been studied by spectroscopic methods. By a VT (1)H NMR experiment a mutual exchange process between the py(ax) and py(free) in the complexes 1-2 was observed, whereas (13)C and (15)N NMR studies showed in the complexes 3-4 a tmeda ligand with an axial/equatorial coordination mode. The reaction of 2 with 3 equiv of Grignard reagent produces the methathesis products [TaR(3)(NtBu)] (R = CH(2)CMeCH(2)5, CH(2)CHCHCH(3)6) in which 2-methylallyl and 2-butenyl groups appear with a η(3)- and σ-coordination mode, respectively. When, toluene solutions of the compounds 5-6 were treated with 2 equiv of 2,6-dimethylphenylisocyanide the imido bisiminoacyl compounds [TaR(NtBu){C(R)NAr-κ(1)C}(2)] (Ar = 2,6-Me(2)C(6)H(3); R = CH(2)CMeCH(2)7, CH(2)CHCHCH(3)8) can be isolated, via an imido iminoacyl intermediate [TaR(2)(NtBu){C(R)NAr-κ(1)C}] (Ar = 2,6-Me(2)C(6)H(3); R = CH(2)CMeCH(2)9) as we have observed in the treatment of 5 with 1 equiv of isocyanide; however, the analogous reaction between 5 and COPh(2) leads to the formation of the trisalkoxo imido compound [Ta(OCPh(2)R)(3)(NtBu)] (R = CH(2)CMeCH(2)10). All new complexes were studied by IR and multinuclear NMR spectroscopy.  相似文献   

7.
Reaction of [Ti(NR)Cl2(py)3] (R=tBu or 2,6-iPr2C6H3) with K(2)[COT] (COT=C8H8) or Li2[COT'] (COT'=1,4-C8H6(SiMe3)2) gave the monomeric complexes [Ti(NR)(eta8-COT)] or [Ti(NR)(eta8-COT')], respectively. The pseudo-two coordinate, "pogo stick" geometry for these complexes is unique in both early transition-metal and cyclooctatetraenyl ligand chemistry. In contrast, reaction of [Ti(N-2,6-Me2C6H3)Cl2(py)3] with K2[COT] gave the mu-imido-bridged dimer [Ti2(mu-N-2,6-Me2C6H3)2(eta8-COT)2]. It appears that as the steric bulk of the imido and C8 ring substituents are decreased, dimerisation becomes more favourable. Aryl imido COT complexes were also prepared by imido ligand exchange reactions between anilines and [Ti(NtBu)(eta(8)-COT)] or [Ti(NtBu)(eta(8)-COT')]. The complexes [Ti(NtBu)(eta(8)-COT)], [Ti(N-2,6-iPr2C6H3)2(eta8-COT)] and [Ti2(mu-N-2,6-Me2C6H3)2(eta8-COT)2] have been crystallographically characterised. The electronic structures of both the monomeric and dimeric complexes have been investigated by using density functional theory (DFT) calculations and gas-phase photoelectron spectroscopy. The most striking aspect of the bonding is that binding to the imido nitrogen atom is primarily through sigma and pi interactions, whereas that to the COT or COT' ring is almost exclusively through delta symmetry orbitals. A DFT-based comparison between the bonding in [Ti(NtBu)(eta8-COT)] and the bonding in the previously reported late transition-metal "pogo stick"complexes [Os(NtBu)(eta6-C6Me6)], [Ir(NtBu)(eta5-C5Me5)] and [Ni(NO)(eta5-C5H5)] has also been undertaken.  相似文献   

8.
The novel 16-electron molybdenum oxo-imido bis(aryloxide) complexes [Mo(NtBu)(O)(2,6-Me2C6H3O)2(py)] (1) and [Mo(NtBu)(O)(2,6-iPr2C6H3O)2(py)] (2) have been prepared by the salt elimination reactions of [Mo(NtBu)(O)Cl2(DME)] with the appropriate lithium aryloxide and from the cycloaddition reactions of tert-butyl isocyanate with the appropriate molybdenum dioxo bis(aryloxide) complex [Mo(O)2(OAr)2(py)n]. Complexes 1 and 2 are the first isolable and crystallographically characterized molybdenum oxo-imido aryloxide complexes. The geometry around the metal in complexes 1 and 2 is best described as a distorted trigonal bipyramid, with the imido and pyridine ligands occupying the axial positions and the oxo and aryloxide ligands in the equatorial plane. X-ray and IR data have confirmed that the imido ligand is the dominant pi donor in the complexes, resulting in an Mo-O bond order of less than 2.5. Reaction of [Mo(NtBu)(O)Cl2(DME)] with Li(OCH2tBu) instead gave the novel complex [Mo(NtBu)(OCH2tBu)3Cl(py)] (3).  相似文献   

9.
The reaction of the chelating ligand tBuNTe(mu-NtBu)2TeNtBu (L) with LiI in THF yields [Li(THF)2L](mu 3-I)[LiI(L)] (3). This complex is also formed by the attempted oxidation of [Li2Te(NtBu)3]2 with I2. An X-ray analysis of 3 reveals that the tellurium diimide dimer acts as a chelating ligand toward (a) [Li(THF)2]+ cations and (b) a molecule of LiI. An extended structure is formed via weak Te...I interactions [3.8296(7)-3.9632(7) A] involving both mu 3-iodide counterions and the iodine atoms of the coordinated LiI molecules. Crystal data: 3, triclinic, space group P1, a = 10.1233(9) A, b = 15.7234(14) A, c = 18.8962(17) A, alpha = 86.1567(16) degrees, beta = 84.3266(16) degrees, gamma = 82.9461(16) degrees, V = 2965.8(5) A3, Z = 2. The oxidation by air of [Li2Te(NtBu)3]2 in toluene produces the radical (Li3[Te(NtBu)3]2), which exhibits an ESR spectrum consisting of a septet of decuplets (g = 2.00506, a(14N) = 5.26 G, a(7Li) = 0.69 G). The complexes [(THF)3Li3(mu 3-X)(Te(NtBu)3)] (4a, X = Cl; 4b, X = Br; 4c, X = I) are obtained from the reaction of [Li2Te(NtBu)3]2 with lithium halides in THF. The iodide complex, 4c, has a highly distorted, cubic structure comprised of the pyramidal [Te(NtBu)3]2- dianion which is linked through three [Li(THF)]+ cations to I- Crystal data: 4c, triclinic, space group P1, a = 12.611(8) A, b = 16.295(6) A, c = 10.180(3) A, alpha = 98.35(3) degrees, beta = 107.37(4) degrees, gamma = 108.26(4) degrees, V = 1829(2) A3, Z = 2.  相似文献   

10.
The ionic complexes [Pd(NP 3)X]X [NP 3 = tris[2-(diphenylphosphino)ethyl]amine, X = Cl (1), Br(2)] and [M(PP 3)X]X [PP 3 = tris[2-(diphenylphosphino)ethyl]phosphine, M = Pd, X = Cl (3), Br(4); M = Pt, X = Cl (5), Br (6)] contain square pyramidal (1, 2) and trigonal bipyramidal (3- 6) cations with three fused chelate rings to M and one M-X bond. By addition of AgX salts (X = Cl, Br, NO 3) an unexpected ring-opening reaction occurs with formation of the heteronuclear species PdAg(NP 3)X 3 [X = Cl (7), Br (8)], MAg(PP 3)X 3 [M = Pd, X = Cl (9), Br (10), NO 3 (13);M = Pt, X = Cl (11), Br (12), NO 3 (14)]. The complexes have been characterized in the solid state and solution. The X-ray crystal structures of 9 and 13 reveal a distorted square-planar arrangement to Pd(II) that is coordinated to three P of PP 3 (the central and two terminal atoms) and to one chloride (9) or one oxygen atom of NO 3 (13). The resultant dangling phosphorus of the ring opening is bound to Ag(I) that completes the three- [PAgCl 2 ( 9)] and four-coordination [PAg(ONO 2)(O 2NO) (13)] through the donor atoms of the anions with the nitrates in 13 unusually acting as both mono- and bidentate ligands. Complexes 7, 8, 10, and 11 undergo oligomerization in solution. Complex 10 oligomerizes giving rise to the ionic compound [Pd 4Ag 2(PP 3) 2 Br 9]Br ( 10a) whose X-ray crystal structure indicates the presence of cations with a Pd(mu-Br) 3Pd unit that connects via bromide bridges two BrPdP 2PPAg Br 2 fragments containing distorted square-planar and trigonal-planar Pd(II) and Ag(I) centers, respectively. The palladium(II) metal centers in the central unit afford the five-coordination (PdBr 5) with a distorted trigonal bipyramidal geometry. The ionic system [Pt 2Ag 2(PP 3) 2 Cl 5]Cl (11a) consists of chloride anions and heteronuclear monocations. The X-ray crystal structure reveals that the cations contain two distorted square-planar ClPtP 3 units bridged by one PAgCl(mu-Cl) 2AgP fragment that is bearing tetrahedral (PAgCl 3) and trigonal planar PAgCl 2 silver(I) centers. Further additions of the corresponding AgX salts to complexes 7- 14 did not give rise to any new ring-opening reaction.  相似文献   

11.
The complexes [(C-N-C)MX(n)(thf)(m)] with the 'pincer' 2,6-bis(imidazolylidene)pyridine, (C-N-C) = 2,6-bis(arylimidazol-2-ylidene)pyridine, aryl = 2,6-Pr(i)2C6H3, M = V, X = Cl, n = 2, m = 1 1a; M = Cr, X = Cl, n = 2, m = 0, 2a, X = Br, 2b; M = Mn, X = Br, n = 2, m = 0, 3; M = Nb, X = Cl, n = 3, m = 0, 4; and M = U, X = Cl, n = 4, m = 0, 5, were synthesised by (a) substitution of labile tmed (1a), thf (2a, 3, 5) or dme (4) by free (C-N-C) or by (b) reaction of the bisimidazolium salt (CH-N-CH)Br2 with {Cr[N(SiMe3)2]2(thf)2} followed by amine elimination (2b). Attempted alkylation of 1a, 2, 3a and 4 with Grignard or alkyl lithiums gave intractable mixtures, and in one case [reaction of 1a with (mesityl)MgBr] resulted in exchange of Cl by Br (1b). Oxidation of 1a or [(C-N-C)VCl3] with 4-methylmorpholine N-oxide afforded the trans-V(C-N-C)(=O)Cl2, 6, which by reaction with AgBF4 in MeCN gave trans-[V(C-N-C)(=O)(MeCN)2][BF4]2, 7. Reaction of 1a with p-tolyl azide gave trans-V(C-N-C)(=N-p-tolyl)Cl2 8. The complex trans-Ti(C-N-C)(=NBu(t))Cl2, 9, was prepared by substitution of the pyridine ligands in Ti(NBu(t))Cl2(py)3 by C-N-C.  相似文献   

12.
Resonance Raman spectra of the cubic metal-halide complexes having the general formula [M(6)X(8)Y(6)](2)(-) (M = Mo or W; X, Y = Cl, Br, or I) are reported. The three totally symmetric fundamental vibrations of these complexes are identified. The extensive mixing of the symmetry coordinates that compose the symmetric normal modes expected in these systems is not observed. Instead the "group-frequency" approximation is valid. Furthermore, the force constants of both the apical and face-bridging metal-halide bonds are insensitive to the identity of either the metal or the halide. Raman spectra of related complexes with methoxy and benzenethiol groups as ligands are reported along with the structural data for [Mo(6)Cl(8)(SPh)(6)][NBu(4)](2). Crystal data for [Mo(6)Cl(8)(SPh)(6)][NBu(4)](2) at -156 degrees C: monoclinic space group P2(1)/c; a = 12.588(3), b = 17.471(5), c = 20.646(2) ?; beta = 118.53(1) degrees, V = 3223.4 ?(3); d(calcd) = 1.664 g cm(-)(3); Z = 2.  相似文献   

13.
Pseudohalogenogermylenes [(iBu)2ATI]GeY (Y=NCO 4 , NCS 5 ) show different coordination behavior towards group 6 metal carbonyls in comparison to the corresponding halogenogermylenes [(iBu)2ATI]GeX (X=F 1 , Cl 2 , Br 3 ) (ATI=aminotroponiminate). The reactions of compounds 4 – 5 and 1 – 3 with cis‐[M(CO)4(COD)] (M=Mo, W, COD=cyclooctadiene) gave trans‐germylene metal complexes {[(iBu)2ATI]GeY}2M(CO)4 (Y=NCO, M=Mo 6 , W 11 ; Y=NCS, M=Mo 7 ) and cis‐germylene metal complexes {[(iBu)2ATI]GeX}2M(CO)4 (M=Mo, X=F 8 , Cl 9 , Br 10 ; M=W, X=Cl 12 ), respectively. Theoretical studies on compounds 7 and 9 reveal that donor–acceptor interactions from Mo to Ge atoms are better stabilized in the observed trans and cis geometries than in the hypothetical cis and trans structures, respectively.  相似文献   

14.
Treatment of [[Ti(eta(5)-C(5)Me(5))(micro-NH)](3)(micro(3)-N)] (1) with the imido complexes [Ti(NAr)Cl(2)(py)(3)] (Ar=2,4,6-C(6)H(2)Me(3)) and [Ti(NtBu)Cl(2)(py)(3)] in toluene affords the single azatitanocubanes [[Cl(2)(ArN)Ti]( micro(3)-NH)(3)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]].(C(7)H(8)) (2.C(7)H(8)) and [[Cl(2)Ti](micro(3)-N)(2)(micro(3)-NH)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]] (3), respectively. Similar reactions of complex 1 with the niobium and tantalum imido derivatives [[M(NtBu)(NHtBu)Cl(2)(NH(2)tBu)](2)] (M=Nb, Ta) in toluene give the single azaheterometallocubanes [[Cl(2)(tBuN)M](micro(3)-N)(micro(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]] (M=Nb (4), Ta (5)), both complexes react with 2,4,6-trimethylaniline to yield the analogous species [[Cl(2)(ArN)M](micro(3)-N)(micro(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]].(C(7)H(8)) (Ar=2,4,6-C(6)H(2)Me(3), M=Nb (6.C(7)H(8)), Ta (7.C(7)H(8))). Also the azaheterodicubanes [M[micro(3)-N)(2)(micro(3)-NH)](2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)](2)].2C(7)H(8) [M=Ti (8.2C(7)H(8)), Zr (9.2C(7)H(8))], and [M[(micro(3)-N)(5)(micro(3)-NH)][Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)](2)].2 C(7)H(8) (Nb (10.2C(7)H(8)), Ta (11.2C(7)H(8))) were prepared from 1 and the homoleptic dimethylamido complex [M(NMe(2))(x)] (x=4, M=Ti, Zr; x=5, M=Nb, Ta) in toluene at 150 degrees C. X-ray crystal structure determinations were performed for 6 and 10, which revealed a cube- and double-cube-type core, respectively. For complexes 2 and 4-7 we observed and studied by DNMR a rotation or trigonal-twist of the organometallic ligands [[Ti(eta(5)-C(5)Me(5))(micro-NH)](3)(micro(3)-N)] (1) and [(micro(3)-N)(micro(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]](1-). Density functional theory calculations were carried out on model complexes of 2, 3, and 8 to establish and understand their structures.  相似文献   

15.
The tripodal ligands NP(3)(tris[2-(diphenylphosphino)ethyl]amine) and PP(3)(tris[2-(diphenylphosphino)ethyl]phosphine), form five-coordinate [Pd(NP(3))X]X [X = Cl (1), Br (2)], [M(PP(3))X]X [M = Pd: X = Cl (4), Br (5), I (6); M = Pt, X = Cl (7), Br (8), I (9)] and four-coordinate[Pd(NP(3))I]I (3) complexes containing three fused rings around the metal. The interaction between Au(tdg)X (tdg = thiodiglycol; X = Cl, Br) or AuI and the respective ionic halo complexes 1-9 in a 1:1 stoichiometric ratio occurs via a ring-opening reaction with formation of the heterobimetallic systems PdAu(NP(3))X(3)[X = Cl (11), Br (12), I (13)], [MAu(PP(3))X(2)]X [M = Pd: X = Cl (14), Br (15), I (16); M = Pt: X = Cl (17), Br (18), I (19)]. The cations of complexes 17 and 18 were shown, by X-ray diffraction, to contain a distorted square-planar Pt(II) arrangement (Pt(P(2)P)X) where PP(3) is acting as tridentate chelating ligand and an almost linear PAuX moiety bearing the dangling phosphorus formed in the ring-opening process. PPh(3) coordinates to Au(I) and not to M(II) when added in excess to 14 and 17. Complexes 14-17 and [Pt(P(4))](BPh(4))(2) (10) (P4=linear tetraphosphine) also react with A(I), via chelate ring-openings to give MAu(2)(PP(3))X(4) [M = Pd: X = Cl (20), Br (21), I (22); M = Pt: X = Cl (23)] and [Pt(2)Au(2)(mu-Cl)(2)(mu-P(4))(2)](BPh(4))(4) (24), respectively.  相似文献   

16.
Thermally induced carbonyl substitutions on [M(CO)5X] (M=Mn, X=Cl, Br; M=Re, X=Br) or room temperature displacement of acetonitrile from [Mo(eta3-methallyl)Cl(CO)2(NCMe)2] produce stable crystalline complexes containing pyridine-2-carboxaldehyde (pyca) as chelate kappa2(N,O) ligands (). These react with ethylglycine to afford iminopyridine complexes containing an amino ester pendant arm in high-yield. Treatment with silver salts produce halide abstraction affording neutral complexes containing coordinated perchlorate or triflate which can be replaced by triphenyl phosphine to give cationic complexes . As confirmed by spectroscopy and X-ray crystallography the pyca ligand remains bonded as chelate kappa2(N,O) throughout these processes.  相似文献   

17.
The complexes MX5(THF) (M = Nb, X = Cl, 2a; M = Ta, X = F, 2c, X = Cl, 2d) and [MX4(THF){O(CH2)4O(CH2)3CH2)}][MX6] (M = Nb, X = Cl, 3a; M = Ta, X = Cl, 3d, X = Br, 3e, X = I, 3f) result from reactions of MX5 with 0.5 and 1.5 equiv of THF, respectively. Compounds 3 contain the unprecedented 4-(tetrahydrofuran-1-ium)-butan-1-oxo ligand and are likely to play a role in the course of THF polymerization catalyzed by MX5. The addition of L (L = 2,5-dimethyltetrahydrofuran, tetrahydropyran, 1,4-dioxane) to MX5 results in the formation of the hexacoordinated complexes MX5(L). The molecular structures of 2d, 3d, and NbCl5(dioxane), 6a, have been ascertained by X-ray diffraction studies.  相似文献   

18.
Berreau LM  Chen J  Woo LK 《Inorganic chemistry》2005,44(21):7304-7306
The imido(meso-tetra-p-tolylporphyrinato)molybdenum(IV) complexes, (TTP)Mo=NR, where R = C6H5 (1a), p-CH3C6H4 (1b), 2,4,6-(CH3)3C6H2 (1c), and 2,6-(i-Pr)2C6H4 (1d), can be prepared by the reaction of (TTP)MoCl2 with 2 equiv of LiNHR in toluene. Upon treatment of the imido complexes with pyridine derivatives, NC5H4-p-X (X = CH3, CH(CH3)2, C[triple bond]N), new six-coordinate complexes, (TTP)Mo=NR.NC5H4-p-X, were observed. The reaction between the molybdenum imido complexes, (TTP)Mo=NC6H5 or (TTP)Mo=NC6H4CH3, and (TTP)Ti(eta2-PhC[triple bond]CPh) resulted in complete imido group transfer and two-electron redox of the metal centers to give (TTP)Mo(eta2-PhC[triple bond]CPh) and (TTP)Ti=NC6H5 or (TTP)Ti=NC6H4CH3.  相似文献   

19.
Preparation of Halogeno Pyridine Rhenates(III), [ReX6?n(Py)n](3?n)? (X = Br, Cl; n = 1?3) Crystal Structures of trans-[(C4H9)4N][ReBr4(Py)2], mer-[ReCl3(Py)3], and mer- [ReBr3(Py)3] The mixed halogeno-pyridine-rhenates(III), [ReX6?n(Py)n](3?n)? (X = Br, Cl), n = 1?3, have been prepared for the first time by reaction of the tetrabutylammoniumsalts (TBA)2[ReX6] (X = Br, Cl) in pyridine with (TBA)BH4 and separation by chromatography on Al2O3. Apart from the monopyridine complexes only the trans and mer isomers are formed from the bis-and tris-pyridine compounds. The X-ray structure determinations of the isotypic neutral complexes mer- [ReX3(Py)3] (monoclinic, space group P 21/n, Z = 4; for X = Cl: a = 9,1120(8), b = 12,5156(14), c = 15,6100(13) Å, β = 91,385(7)°; for X = Br: a = 9,152(5), b = 12,852(13), c = 15,669(2) Å, β = 90,43(2)°) reveal, due to the stronger trans influence of pyridine compared with Cl and Br, that the Re? X distances in asymmetric Py? Re? X3 axes with ReCl3 = 2,397 Å and ReBr3 = 2,534 Å are elongated by 1,3 and 1% in comparison with symmetric X1? Re? X2 axes with ReCl1 = ReCl2 = 2,367 Å and ReBr1 = 2,513 and ReBr2 = 2,506 Å, respectively. The Re? N bond lengths are roughly equal with 2,12 Å. Trans-(TBA)[ReBr4(Py)2] crystallizes triclinic, space group P1 , a = 9,2048(12), b = 12,0792(11), c = 15,525(2) Å, α = 95,239(10), β = 94,193(11), γ = 106,153(9)°, Z = 2. The unit cell contains two independent but very similar complex anions with approximate D2h(mmm) point symmetry.  相似文献   

20.
The molybdenum oxo-imido complex, [Mo(O)(NtBu)Cl2(dme)] (1), was obtained from the reaction between [MoO2Cl2(dme)] and [Mo(NtBu)2Cl2(dme)]. Reactions between [Mo(O)(NR)Cl2(dme)] (where R = tBu or 2,6-iPr2C6H3) and the disodium Schiff base compounds Na(2)(3,5-tBu2)2salen, Na(2)(3,5-tBu2)2salpen, and Na(2)(7-Me)2salen afforded the first oxo-imido transition metal Schiff base complexes: [Mo(O)(NtBu)[(3,5-tBu2)2salen]] (2), [Mo(O)(NtBu)[(3,5-tBu2)2salpen]] (3), and [Mo(O)(N-2,6-iPr2C6H3)[(7-Me)2salen]] (4), respectively. The compounds [Mo(NtBu)2[(3,5-tBu2)2salpen]] (5) from [Mo(NtBu)2(NHtBu)2] and [Mo(N-2,6-iPr2C6H3)(2)[(7-Me)2salen]](6) from [Mo(N-2,6-iPr2C6H3)(2)(NHtBu)2] (7) are also reported. Compounds 1-7 were characterized by NMR, IR, and FAB mass spectroscopy while compounds 3, 4, and 5 were additionally characterized by X-ray crystallography. In conjunction with tBuOOH as oxidant, compound 3 is a catalyst for the oxidation of benzyl alcohol to benzaldehyde and cis-cyclooctene and 1-octene to the corresponding epoxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号