首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The folding of the single-stranded 3' end of the human telomere into G-quadruplex arrangements inhibits the overhang from hybridizing with the RNA template of telomerase and halts telomere maintenance in cancer cells. The ability to thermally stabilize human telomeric DNA as a four-stranded G-quadruplex structure by developing selective small molecule compounds is a therapeutic path to regulating telomerase activity and thereby selectively inhibit cancer cell growth. The development of compounds with the necessary selectivity and affinity to target parallel-stranded G-quadruplex structures has proved particularly challenging to date, relying heavily upon limited structural data. We report here on a structure-based approach to the design of quadruplex-binding ligands to enhance affinity and selectivity for human telomeric DNA. Crystal structures have been determined of complexes between a 22-mer intramolecular human telomeric quadruplex and two potent tetra-substituted naphthalene diimide compounds, functionalized with positively charged N-methyl-piperazine side-chains. These compounds promote parallel-stranded quadruplex topology, binding exclusively to the 3' surface of each quadruplex. There are significant differences between the complexes in terms of ligand mobility and in the interactions with quadruplex grooves. One of the two ligands is markedly less mobile in the crystal complex and is more quadruplex-stabilizing, forming multiple electrostatic/hydrogen bond contacts with quadruplex phosphate groups. The data presented here provides a structural rationale for the biophysical (effects on quadruplex thermal stabilization) and biological data (inhibition of proliferation in cancer cell lines and evidence of in vivo antitumor activity) on compounds in this series and, thus, for the concept of telomere targeting with DNA quadruplex-binding small molecules.  相似文献   

2.
Telomeres are the ends of the linear chromosomes of eukaryotes and consist of tandem GT-rich repeats in telomere sequence i.e. 500-3000 repeats of 5'-TTAGGG-3' in human somatic cells, which are shortened gradually with age. The G-rich overhang of telomere sequence can adopt different intramolecular fold-backs and tetra-stranded DNA structures, in vitro, which inhibit telomerase activity. In this report, DNA binding agents to telomere sequence were studied novel therapeutic possibility to destabilize telomeric DNA sequences. Oligonucleotides containing the guanine repeats in human telomere sequence were synthesized and used for screening potential antitumor drugs. Telomeric DNA sequence was characterized using spectral measurements and CD spectroscopy. CD spectrum indicated that the double-stranded telomeric DNA is in a right-handed conformation. Polyacrylamide gel electrophoresis was performed for binding behaviors of antitumor compounds with telomeric DNA sequence. Drugs interacted with DNA sequence caused changes in the electrophoretic mobility and band intensity of the gels. Depending on the binding mode of the anticancer drugs, telomeric DNA sequence was differently recognized and the efficiency of cleavage of DNA varies in the bleomycin-treated samples under different conditions. DNA cleavage occurred at about 1% by the increments of 1 micromM bleomycin-Fe(III). These results imply that the stability of human telomere sequence is important in conjunction with the cancer treatment and aging process.  相似文献   

3.
Telomeric DNA is a potential selective target for cancer therapy since the tumour-associated enzyme telomerase regulates telomere maintenance in most cancer cells. The 3′ single-stranded ends of telomeric DNA can be folded into quadruplex structures by appropriate small molecules. We describe the preparation of a new class of 2,7-disubstituted 10H-indolo[3,2-b]quinolines with enhanced selectivity for the stabilisation of quadruplex DNA compared to duplex DNA, and also the preparation of a key intermediate for the synthesis of trisubstituted quindolines.  相似文献   

4.
We describe the first G-quadruplex targeting approach that combines intercalation and hybridization strategies by investigating the interaction of a G-rich peptide nucleic acid (PNA) acridone conjugate 1 with a three-repeat fragment of the human telomere G 3 to form a hybrid PNA-DNA quadruplex that mimicks the biologically relevant (3+1) pure DNA dimeric telomeric quadruplex. Using a combination of UV and fluorescence spectroscopy, circular dichroism (CD), and mass-spectrometry, we show that PNA 1 can induce the formation of a bimolecular hybrid quadruplex even at low salt concentration upon interaction with a single-stranded three-repeat fragment of telomeric DNA. However, PNA 1 cannot invade a short fragment of B-DNA even if the latter contains a CCC motif complementary to the PNA sequence. These studies could open up new possibilities for the design of a novel generation of quadruplex ligands that target not only the external features of the quadruplex but also its central core constituted by the tetrads themselves.  相似文献   

5.
6.
核酸中富含短的G-碱基重复的序列可以形成一种复杂的高级结构,称为G-四链体(G-quadruplex).在基因组中,借助生物信息学发现这类富G序列广泛分布在基因的启动子区,特别是那些参与到复制中去的基因,例如癌基因.同时发现这类序列在mRNA的5′非翻译区(5′UTR)也广泛存在.这类序列在染色体末段端粒部位的存在及功能已得到充分阐明.已知端粒富含G-碱基序列,其3′末端以单链状态存在,这使得在一些小分子的选择性作用下端粒序列很容易形成G-四链体结构,进而破坏端粒结构,影响端粒酶活性.已知端粒酶在超过85%的肿瘤中过量表达,因此,端粒酶已经成为抗癌药物设计的特殊靶点,是目前本领域的研究热点之一.已发现系列配体通过有效抑制端粒酶而表现高的抗肿瘤活性.本文主要综述了近年来端粒G-四链体分子识别及其药物靶向的最新进展,并对其作用机理做了进一步的分析和探讨.  相似文献   

7.
The G-rich strand of human telomeric DNA can fold into a four-stranded structure called G-quadruplex and inhibit telomerase activity that is expressed in 85-90% tumor cells. For this reason, telomere quadruplex is emerging as a potential therapeutic target for cancer. Information on the structure of the quadruplex in the physiological environment is important for structure-based drug design targeting the quadruplex. Recent studies have raised significant controversy regarding the exact structure of the quadruplex formed by human telomeric DNA in a physiological relevant environment. Studies on the crystal prepared in K+ solution revealed a distinct propeller-shaped parallel-stranded conformation. However, many later works failed to confirm such structure in physiological K+ solution but rather led to the identification of a different hybrid-type mixed parallel/antiparallel quadruplex. Here we demonstrate that human telomere DNA adopts a parallel-stranded conformation in physiological K+ solution under molecular crowding conditions created by PEG. At the concentration of 40% (w/v), PEG induced complete structural conversion to a parallel-stranded G-quadruplex. We also show that the quadruplex formed under such a condition has unusual stability and significant negative impact on telomerase processivity. Since the environment inside cells is molecularly crowded, our results obtained under the cell mimicking condition suggest that the parallel-stranded quadruplex may be the more favored structure under physiological conditions, and drug design targeting the human telomeric quadruplex should take this into consideration.  相似文献   

8.
We present an NMR study on the structure of a DNA fragment of the human telomere containing three guanine-tracts, d(GGGTTAGGGTTAGGGT). This sequence forms in Na(+) solution a unique asymmetric dimeric quadruplex, in which the G-tetrad core involves all three G-tracts of one strand and only the last 3'-end G-tract of the other strand. We show that a three-repeat human telomeric sequence can also associate with a single-repeat human telomeric sequence into a structure with the same topology that we name (3 + 1) quadruplex assembly. In this G-quadruplex assembly, there are one syn.syn.syn.anti and two anti.anti.anti.syn G-tetrads, two edgewise loops, three G-tracts oriented in one direction and the fourth oriented in the opposite direction. We discuss the possible implications of the new folding topology for understanding the structure of telomeric DNA, including t-loop formation, and for targeting G-quadruplexes in the telomeres.  相似文献   

9.
Qiao Y  Deng J  Jin Y  Chen G  Wang L 《The Analyst》2012,137(7):1663-1668
The G-rich overhang of human telomere tends to form a G-quadruplex structure, and G-quadruplex formation can effectively inhibit telomerase activity in most cancer cells. Therefore, it is important to identify the formation and properties of the G-quadruplex, with the particular aim of selecting G-quadruplex-binding ligands that could potentially lead to the development of anticancer therapeutic agents. With this goal in mind, we report a fluorescence resonance energy transfer (FRET) assay system for the identification of G-quadruplex ligands using DNA-functionalized gold nanoparticles (DNA-GNPs) as the fluorescence quencher and a carboxyfluorescein (FAM)-tagged human telomeric sequence (F-GDNA) as the recognition probe. A thiolated complementary strand of human telomeric DNA (cDNA), which first adheres to the surface of the GNPs and then hybridizes with F-GDNA, results in the fluorescence quenching of F-GDNA by the GNPs. However, fluorescence is restored when single-stranded F-GDNA folds into a G-quadruplex structure upon the binding of quadruplex ligands, leading to the release of F-GDNA from the surface of the GNPs. Combined data from fluorescence measurements and CD spectroscopy indicated that ligands selected by this FRET method could induce GDNA to form a G-quadruplex. Therefore, this FRET G-quadruplex assay is a simple and effective approach to identify quadruplex-binding ligands, and, as such, it promises to provide a solid foundation for the development of novel anticancer therapeutic agents.  相似文献   

10.
Using the telobox to search for plant telomere binding proteins   总被引:1,自引:0,他引:1  
Telobox is a Myb-related DNA-binding domain which is present in a number of yeast, plant and animal proteins. Its capacity to bind preferentially double-stranded telomeric DNA has been used in numerous studies to search for candidate telomeric proteins in various organisms, including plants. Here we provide an overview of these studies with a special emphasis on plants, where a specific subfamily of the proteins possessing the N-terminally positioned telobox is present in addition to more common C-terminal telobox proteins. We further demonstrate the presence of a telobox protein (CpTBP1) in Cestrum parqui, a plant lacking typical telomeres and telomerase. The protein shows nuclear localisation and association with chromatin. The role of this protein in ancestral and current telomere structure is discussed in the evolutionary context. Altogether, the present overview shows the importance of the telobox domain in a search for candidate telomere proteins but at the same time warns against oversimplified identification of any telobox protein with telomere structure without appropriate evidence of its telomeric localisation and function.  相似文献   

11.
Telomeric repeat-containing RNA (TERRA) is important for telomere regulation, but the structural basis for how TERRA localizes to chromosome ends is unknown. Here we report on studies exploring whether the TERRA G-quadruplex structure is critical for binding to telomeres. We demonstrate that the telomeric protein TRF2 binds TERRA via interactions that necessitate the formation of a G-quadruplex structure rather than the TERRA sequence per se. We also show that TRF2 simultaneously binds TERRA and telomeric duplex or G-quadruplex DNA. These observations suggest that the TERRA G-quadruplex is a key feature of telomere organization.  相似文献   

12.
In the current study, we used a combination of gel electrophoresis, circular dichroism, and UV melting analysis to investigate the structure and stability of G-quadruplexes formed by long telomeric DNAs from Oxytricha and human, where the length of the repeat (n)=4 to 12. We found that the Oxytricha telomeric DNAs, which have the sequence (TTTTGGGG)n, folded into intramolecular and intermolecular G-quadruplexes depending on the ionic conditions, whereas human telomeric DNAs, which have the sequence (TTAGGG)n, formed only intramolecular G-quadruplexes in all the tested conditions. We further estimated the thermodynamic parameters of the intramolecular G-quadruplex. We found that thermodynamic stabilities of G-quadruplex structures of long telomeric DNAs (n=5 to 12) are mostly independent of sequence length, although telomeric DNAs are more stable when n=4 than when n>or=5. Most importantly, when n is a multiple of four, the change in enthalpy and entropy for G-quadruplex formation increased gradually, demonstrating that the individual G-quadruplex units are composed of four repeats and that the individual units do not interact. Therefore, we propose that the G-quadruplexes formed by long telomeric DNAs (n>or=8) are bead-on-a-string structures in which the G-quadruplex units are connected by one TTTT (Oxytricha) or TTA (human) linker. These results should be useful for understanding the structure and function of telomeres and for developing improved therapeutic agents targeting telomeric DNAs.  相似文献   

13.
14.
3,4-Tetramethylpyridiniumporphyrazines bind strongly and selectively to human telomeric G-quadruplex DNA, inducing the formation of an antiparallel quadruplex in a process that mimics molecular chaperones.  相似文献   

15.
IntroductionTelomeresaretheendregionsofchromosomesconsistingofDNAandassociatedprotein .Thetelom ericDNAcontainsG richrepeatsofDNAsequences .ThisG richoverhangcanformastable guanine quadruplexinvitrounder physiologicalcondi tions[1,2 ] .Itisnowwell establishedt…  相似文献   

16.
The gradual loss of telomeric DNA can contribute to replicative senescence and thus, having longer telomeric DNA is generally considered to provide a longer lifespan. Maintenance and stabilization of telomeric DNA is assisted by binding of multiple DNA-binding proteins, including those involved in double strand break (DSB) repair. We reasoned that declining DSB repair capacity and increased telomere shortening in aged individuals may be associated with decreased expression of DSB repair proteins capable of telomere binding. Our data presented here show that among the DSB repair proteins tested, only the expression of Ku70 and Mre11 showed statistically significant age-dependent changes in human lymphocytes. Furthermore, we found that expressions of Ku70 and Mre11 are statistically correlated, which indicate that the function of Ku70 and Mre11 may be related. All the other DSB repair proteins tested, Sir2, TRF1 and Ku80, did not show any significant differences upon aging. In line with these data, people who live in the regional community (longevity group), which was found to have statistically longer average life span than the rest area, shows higher level of Ku70 expression than those living in the neighboring control community. Taken together, our data show, for the first time, that Ku70 and Mre11 may represent new biomarkers for aging and further suggest that maintenance of higher expression of Ku70 and Mre11 may be responsible for keeping longer life span observed in the longevity group.  相似文献   

17.
The end of human telomeres is comprised of a long G-rich single-stranded DNA (known as 3'-overhang) able to adopt an unusual three-dimensional "beads-on-the-string" organization made of consecutively stacked G-quadruplex units (so-called quadruplex multimers). It has been widely demonstrated that, upon interaction with hemin, discrete quadruplexes acquire peroxidase-mimicking properties, oxidizing several organic probes in H(2)O(2)-rich conditions; this property, known as DNAzyme, has found tens of applications in the last two decades. However, little is known about the DNAzyme activity of multimeric quadruplexes; this is an important question to address, especially in light of recent reports that exploit the DNAzyme process to optically assess the activity of an enzyme that elongates the telomeric overhang, the telomerase. Herein, we thoroughly investigate the DNAzyme activity of long telomeric fragments, with a particular focus on both the nature of the hemin/multimeric quadruplex interactions and the putative higher-order fold of the studied fragments; in light of our results, we also propose possible ways that may be followed to improve the use of DNAzyme to evaluate the telomerase activity.  相似文献   

18.
We provide a novel insight into dynamic conversion of the human telomeric G-quadruplexes and particularly a step-to-step transformation pathway of the long sequence containing two quadruplex units in K(+) solution in a molecular crowding environment, implying a possible behavior of the human telomeric DNA under physiological conditions.  相似文献   

19.
Structural studies of human telomeric repeats represent an active field of research with potential applications toward the development of specific telomeric quadruplex-targeting drugs for anticancer treatment. To date, high-definition structures were limited to DNA sequences containing up to four GGGTTA repeats. Here we investigate the formation of G-quadruplexes in sequences spanning five to seven human telomeric repeats using NMR, UV, and CD spectroscopy. A (3+1) G-quadruplex with a long propeller loop was isolated from a five-repeat sequence utilizing a guanine-to-inosine substitution. A simple approach of selective site-specific labeling of guanine residues was devised to rigorously determine the folding topology of the oligonucleotide. The same scaffold could be extrapolated to six- and seven-repeat sequences. Our results suggest that long human telomeric sequences consisting of five or more GGGTTA repeats could adopt (3+1) G-quadruplex structures harboring one or more repeat(s) within a single loop. We report on the formation of a Watson-Crick duplex within the long propeller loop upon addition of the complementary strand, demonstrating that the long loop could serve as a new recognition motif.  相似文献   

20.
Quadruplex DNA structures are attracting an enormous interest in many areas of chemistry, ranging from chemical biology, supramolecular chemistry to nanoscience. We have prepared carbohydrate–DNA conjugates containing the oligonucleotide sequences of G‐quadruplexes (thrombin binding aptamer (TBA) and human telomere (TEL)), measured their thermal stability and studied their structure in solution by using NMR and molecular dynamics. The solution structure of a fucose–TBA conjugate shows stacking interactions between the carbohydrate and the DNA G‐tetrad in addition to hydrogen bonding and hydrophobic contacts. We have also shown that attaching carbohydrates at the 5′‐end of a quadruplex telomeric sequence can alter its folding topology. These results suggest the possibility of modulating the folding of the G‐quadruplex by linking carbohydrates and have clear implications in molecular recognition and the design of new G‐quadruplex ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号