首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The gas from a free air bubble will readily dissolve in water, driven by two main factors: the concentration (undersaturation) of dissolved gas in the aqueous solution and the surface tension of the gas bubble-water interface via a Laplace overpressure in the bubble that this creates. This paper experimentally and theoretically investigates each of these effects individually. To study the effects of surface tension, single- and double-chain surfactants were utilized to control and define interfacial conditions of the microbubble in saturated solution. To study the effect of undersaturation, solid distearoylphosphocholine lipid was utilized to coat the gas microparticle with, essentially, a wax monolayer and to achieve zero tension in the surface. The experimental work was performed using a micromanipulation technique that allows one to create and micromanipulate single air microparticles (5-50 microm radius range) in infinite dilution and to accurately record the size of the particle as it loses volume due to the dissolution process. The micropipet technique has shown to be an improvement over other previous attempts to measure dissolution time with a 3.2% average experimental error in gas microparticle dissolution time. An ability to study a gas microparticle in infinite dilution in an isotropic diffusion field is in line with the theoretical assumptions and conditions of the Epstein-Plesset model. The Epstein-Plesset model on average underpredicted the experimentally determined dissolution time by 8.6%, where the effect of surface tension was considered with a range of surface tensions from 72 down to 25 mN/m. The Epstein-Plesset model on average overpredicted the dissolution time by 8.2%, where the effect of undersaturation was considered for a microparticle with zero tension in the surface (zero Laplace pressure) and a range of gas saturations from 70% to 100%. Compared to previous attempts in the literature, this paper more appropriately and accurately tests the Epstein-Plesset model for the dissolution of a single microbubble and an air-filled microparticle in aqueous solution.  相似文献   

2.
Gold nanoparticles with an average diameter of 11 nm (Au(39000)) were prepared in an SDS aqueous solution. A 80-microm liquid droplet (microdroplet) of the solution was ejected into the atmosphere from a microdroplet nozzle. Structural changes of the gold nanoparticles in the microdroplet, after they were irradiated with a focused single-nanosecond laser pulse at the wavelength of 532 nm, were studied by transmission electron microscopy (TEM) and optical absorption spectroscopy. It was revealed that the gold nanoparticles are fragmented into small particles and then the small fragments aggregate with each other. The aggregation was found to be terminated 100 micros after the laser-pulse excitation.  相似文献   

3.
The novel combination of optical tweezers and fluorescence lifetime imaging microscopy (FLIM) has been used, in conjunction with specially developed temperature-sensitive fluorescent microprobes, for the non-invasive measurement of temperature in a microfluidic device. This approach retains the capability of FLIM to deliver quantitative mapping of microfluidic temperature without the disadvantageous need to introduce a fluorescent dye that pervades the entire micofluidic system. This is achieved by encapsulating the temperature-sensitive Rhodamine B fluorophore within a microdroplet which can be held and manipulated in the microfluidic flow using optical tweezers. The microdroplet is a double bubble in which an aqueous droplet of the fluorescent dye is surrounded by an oil shell which serves both to contain the fluorophore and to provide the refractive index differential required for optical trapping of the droplet in an external aqueous medium.  相似文献   

4.
Polymer films containing dispersions of liquid crystal microdroplets have considerable potential for use in displays and other light control devices. These polymer-dispersed liquid crystal (PDLC) films operate by electric field control of light scattering, rather than by polarization control as in the case of twisted nematic systems. The scattering characteristics of the PDLC films are determined by the refractive indices of the polymer and liquid crystal and by the size of the microdroplets. We have found that it is possible to regulate the microdroplet size by controlling the droplet formation rate (i.e. the cure kinetics of the film). Using calorimetry and scanning electron microscopy, we determined the influence of cure kinetics on microdroplet size for epoxy-based PDLCs. We found that droplet size increased with increasing cure time constant. However, the relationship changed as cure temperature was varied, perhaps as a result of competing cure processes. We also determined the phase behaviour of the epoxy-based PDLCs. The liquid crystal acted as a plasticizer, depressing the glass transition temperature of the PDLC samples slightly below that of the pure epoxy. The temperature and enthalpy of the nematic to isotropic transition of the liquid crystal material in the microdroplets were both functions of cure temperature. From the transition enthalpy it was possible to estimate a, the fraction of liquid crystal contained in the droplets; we found that a decreased with increasing cure temperature, presumably as a result of greater liquid crystal solubility in the epoxy matrix at higher temperatures.  相似文献   

5.
Ji XH  Cheng W  Guo F  Liu W  Guo SS  He ZK  Zhao XZ 《Lab on a chip》2011,11(15):2561-2568
Optical barcoding technology based on quantum dot (QD)-encoded microparticles has attracted increasing attention in high-throughput multiplexed biological assays, which is realized by embedding different-sized QDs into polymeric matrixes at precisely controlled ratios. Considering the advantage of droplet-based microfluidics, producing monodisperse particles with precise control over the size, shape and composition, we present a proof-of-concept approach for on-demand preparation of QD-encoded microparticles based on this versatile new strategy. Combining a flow-focusing microchannel with a double T-junction in a microfluidic chip, biocompatible QD-doped microparticles were constructed by shearing sodium alginate solution into microdroplets and on-chip gelating these droplets into a hydrogel matrix to encapsulate CdSe/ZnS QDs. Size-controllable QD-doped hydrogel microparticles were produced under the optimum flow conditions, and their fluorescent properties were investigated. A novel multiplex optical encoding strategy was realized by loading different sized QDs into a single droplet (and thus a hydrogel microparticle) with different concentrations, which was triggered by tuning the flow rates of the sodium alginate solutions entrapped with different-colored QDs. A series of QD-encoded microparticles were controllably, and continuously, produced in a single step with the present approach. Their application in a model immunoassay demonstrated the potential practicability of QD-encoded hydrogel microparticles in multiplexed biomolecular detection. This simple and robust strategy should be further improved and practically used in making barcode microparticles with various polymer matrixes.  相似文献   

6.
The single crystallization method by focusing on the characteristic internal fluid dynamics of the microdroplets was explored. Also the theoretical background was discussed, and the droplet size for obtaining only a single crystal within a microdroplet was estimated.  相似文献   

7.
Tan MK  Friend JR  Yeo LY 《Lab on a chip》2007,7(5):618-625
The ability to detect microbes, pollens and other microparticles is a critically important ability given the increasing risk of bioterrorism and emergence of antibiotic-resistant bacteria. The efficient collection of microparticles via a liquid water droplet moved by a surface acoustic wave (SAW) device is demonstrated in this study. A fluidic track patterned on the SAW device directs the water droplet's motion, and fluid streaming induced inside the droplet as it moves along is a key advantage over other particle collection approaches, because it enhances microparticle collection and concentration. Test particles consisted of 2, 10, 12 and 45 microm diameter monodisperse polystyrene and melamine microparticles; pollen from the Populus deltoides, Kochia scoparia, Secale cerale, and Broussonetia papyrifera (Paper Mulberry) species; and Escherichia coli bacteria. The collection efficiency for the synthetic particles ranged from 16 to 55%, depending on the particle size and surface tension of the collection fluid. The method was more effective in collecting pollen and the bacteria with an efficiency of 45-68% and 61.0-69.8%, respectively. Pollen collection was strongly influenced by its diameter, size, and surface geometry in a manner contrary to initial expectations. Reasons for the consistent yet unexpected collection results include leaky SAW pressure boundary segregation and shear-induced concentration of larger particles, and the subtle effects of wetting interactions. These results demonstrate a new method for collecting microparticles requiring only about one second per run, and illustrate the inadequacy of using synthetic microparticles as a substitute for their biological counterparts in experiments studying particle collection and behavior.  相似文献   

8.
This work describes a new sampling method termed directly suspended droplet microextraction (DSDME) was developed. In this technique a free microdroplet of solvent is delivered to the surface of an immiscible aqueous sample while being agitated by a stirring bar placed on the bottom of the sample cell. After some time, the microdroplet of solvent is withdrawn by a syringe and analyzed. Under the proper stirring conditions, the suspended droplet can remain in a top-center position of the aqueous sample. The droplet can become partly engulfed within the sample while maintaining a stable shape with mechanical equilibrium and the mass transfer could be effectively intensified. Using 1,8-dioxyanthraquinone as a model compound and 1-octanol as the solvent, the extraction performance was investigated using HPLC. Since DSDME is based on a self-stable single microdroplet system, there are no requirements for special equipment or other supporting material like hollow fibers. Other advantages include ease of operation, free from cross contamination, quick to reach extraction equilibrium, and the ability to be combined with various analysis instruments. In our experiments, good linearity (r2 = 0.9992) and precision (R.S.D. < 1%, n = 5) were achieved. DSDME is a promising pre-treatment method for the fast analysis of trace components in complicated matrices.  相似文献   

9.
The macroscopic contact angle theta(m) of a liquid drop on a rough solid surface in the presence of a gas is calculated microscopically on the basis of a variational minimization of the total potential energy of the drop. Two limiting cases are considered: the liquid penetrates into the space between asperities (Wenzel regime) and the liquid resides on the top of asperities (Cassie-Baxter regime). Long-range as well as short-range interactions between the molecules of liquid, solid, and gas are taken into account. It was also assumed that small portions of insoluble gas are accumulated near the edges of the asperities during the formation of the droplet. The contact angle depends on several parameters involved in the microscopic interactions as well as on the fractions of solid surface between asperities, and of the surface of the asperities themselves, that are in contact with the liquid. It is shown that the theory can explain the nonlinear dependence of cos theta(m) on roughness observed by Krupenkin et al. [Krupenkin, T. N.; Taylor, J. A.; Schneider, T. M.; Yang, S. Langmuir 2004, 20, 3824].(1).  相似文献   

10.
In this paper, we focus on the isotropic-to-nematic phase transition in a liquid-crystal droplet. We present the results of an experiment to measure the growth of the nematic phase within an isotropic phase liquid-crystal droplet. Experimentally, we observe two primary phase transition regimes. At short time scales, our experimental results (R(t) approximately t0.51) show good agreement with a Stefan-type model of the evolution of the nematic phase within the isotropic phase of a liquid crystal. As time progresses, the growth of the nematic phase is restricted by increased confinement of the droplet boundary. During this stage of growth, the nematic phase grows at a slower rate of R(t) approximately t0.31. The slower growth at later stages might be due to a variety of factors such as confinement-induced latent heat reduction; a change of defect strength during its evolution; or interactions between the defect and the interface between the liquid crystal and oil or between adjacent defects. The presence of two growth regimes is also consistent with the molecular simulations of Bradac et al. (Bradac, Z.; Kralj, S.; Zumer, S. Phys. Rev. E 2002, 65, 021705) who identify an early stage domain regime and a late stage confinement regime. For the domain and confinement regimes, Bradac et al. (Bradac, Z.; Kralj, S.; Zumer, S. Phys. Rev. E 2002, 65, 021705) obtained growth exponents of 0.49 +/- 0.05 and 0.25 +/- 0.05. These are remarkably close to the values 0.51 and 0.31 observed in our experiments.  相似文献   

11.
It is shown that a flat interface between a soluble gas and a liquid that contains an arbitrary number of partially wetting nonidentical spheres is linearly stable to slight perturbations caused by fluctuations in the gas volume. Stability is proved by showing that the rate of change of the volume of the gas with curvature of the interface is positive in the neighborhood of the equilibrium state of zero interface curvature. Physically, the volume fluctuations induce fluctuations in the curvature of the interface that would naturally lead to dissolution of gas into the liquid in the case of positive curvature and entry of gas into the bubble in the case of negative curvature, either of which restores equilibrium. This result may possibly explain the unusual long-term stability of gas bubbles covered by colloidal particles in the recent experiments of Du et al. (Du, Z.; Bilbao-Montoya, M. P.; Binks, B. P.; Dickinson, E.; Ettelaie, R.; Murray, B. S. Langmuir 2003, 19, 3106).  相似文献   

12.
Diffusion evaporation of a sessile binary droplet in an atmosphere of a noncondensable carrier gas has been considered. For a droplet consisting of two infinitely miscible liquids, a relation between the current values of solution concentration and volume of the droplet has been derived in an explicit form under the ideal solution approximation. It has been shown that the volume of a sessile binary droplet may, as well as the volume of a free binary droplet, vary nonmonotonically with time. The evaporation of a droplet of an aqueous sulfuric-acid solution has been considered in detail taking into account the nonideality of the solution. Time variations in the volume, base area, and contact angle have been experimentally measured for the sessile droplet of an aqueous sulfuric-acid solution on a hydrophobized substrate. The experimental data obtained at different initial humidities of water-vapor and droplet-solution concentrations have been analyzed within the theory of the stationary isothermal diffusion evaporation of a sessile binary droplet.  相似文献   

13.
In this paper, a novel suspended droplet microextraction method was developed for the detection of trace of organic compounds in water samples. The process was executed in a rotating extraction vial without the use of a stir bar. A single drop of octan-1-ol placed on top of the water sample was used as the solvent. The droplet remained on top of the water sample as a thin layer with an expanding surface area during the extraction stage, while during the sampling stage, the droplet was collected and sampled by inserting a needle. The volume of the microdroplet used was 3 μL or less, to ensure high organic compound sensitivity. The microextraction experimental setup was simple, utilizing centrifugal forces and possesses the advantages of low cross-contaminant/interference and applicability to water samples apt to emulsification. Nitrobenzene was selected as a model organic compound, and samples were analyzed using gas chromatography (GC) or UV-vis spectrometry. Analysis of the microextraction method results showed a relative standard deviation (RSD) less than 3.82%.  相似文献   

14.
Herein, we demonstrate the potential of droplet‐based microfluidics for controlling protein crystallization and generating single‐protein crystals. We estimated the critical droplet size for obtaining a single crystal within a microdroplet and investigated the crystallization of four model proteins to confirm the effect of protein molecular diffusion on crystallization. A single crystal was obtained in microdroplets smaller than the critical size by using droplet‐based microfluidics. In the case of thaumatin crystallization, a single thaumatin crystal was obtained in a 200 μm droplet even with high supersaturation. In the case of ferritin crystallization, the nucleation profile of ferritin crystals had a wider distribution than the nucleation profiles of lysozyme, thaumatin, and glucose isomerase crystallization. We found that the droplet‐based microfluidic approach was able to control the nucleation of a protein by providing control over the crystallization conditions and the droplet size, and that the diffusion of protein molecules is a significant factor in controlling the nucleation of protein crystals in droplet‐based microfluidics.  相似文献   

15.
Recent experiments (Afsar-Siddiqui, A. B.; Luckham, P. F.; Matar, O. K. Langmuir 2004, 20, 7575-7582) on the spreading of aqueous droplets containing cationic surfactants over thin aqueous films supported by negatively charged substrates demonstrated trends in the spreading behavior with either increasing surfactant concentration or increasing film thickness. Although the substrate is initially hydrophilic and the droplet spreads, surfactant adsorption at the substrate renders it hydrophobic leading to droplet retraction. We generate a model here using lubrication theory that allows the effect of the surfactant on the wettability to be taken into account. Our numerical results show that due to basal adsorption of surfactant at the interface, the initially hydrophilic solid substrate is rendered hydrophobic. This then drives droplet retraction and dewetting, which is in agreement with the experimentally observed trends.  相似文献   

16.
17.
The problem of vapor diffusion toward a droplet nucleated and growing in the diffusion regime is exactly solved using the similarity theory. The surface motion of droplets is taken into account in the solution. The constructed nonstationary concentration field of vapor satisfies the diffusion equation, the boundary condition of equilibrium on the surface of growing droplet, and the initial homogeneous condition. According to the found solution, the radius of a droplet is proportional to the square root of the time of its growth. Far from the critical point, at a low ratio between the densities of excess vapor and a liquid droplet, the proportionality coefficient coincides with that resulting from an approximate solution. The balance between the numbers of molecules removed from vapor and those composing a growing droplet exactly corresponds to the obtained solution.  相似文献   

18.
19.
Three consecutive stages of evaporation of a sessile water microdroplet are studied both theoretically and experimentally under the conditions of contact angle hysteresis. The influence of thermal effects on the dynamics of droplet evaporation is quantitatively investigated on the basis of the obtained experimental results. The features of droplet evolution are analyzed at the final stage, when both the contact angle and the radius of the droplet base decrease with time. It is shown that evaporation at this stage also occurs in a steady-state regime, but the average droplet temperature approaches the ambient temperature.  相似文献   

20.
The effects of an azo dye on the diffraction efficiency, morphology and electro-optic properties of the transmission mode of a holographic polymer dispersed liquid crystal (LC) have been studied. The azo dye induced an induction period which otherwise does not exist, followed by a gradual increase of the diffraction efficiency to a saturation value which increased with increasing azo dye content, as a result of the azo dye reorientating LC molecules within the droplet. The increased diffraction efficiency was caused by the decreased droplet coalescence which was due to the hindered migration of the LC by the dye molecules, and to LC orientation induced by azo dye molecules giving a high refractive index contrast. The droplet size decreased with increasing dye content. The dye also lowered the threshold voltage due to the high dielectric anisotropy caused by the presence of a strong on-axis dipole moment and decreased the response time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号