首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The extent of internal energy deposition into ions upon storage, radial ejection, and detection using a linear quadrupole ion trap mass spectrometer is investigated as a function of ion size (m/z 59 to 810) using seven ion-molecule thermometer reactions that have well characterized reaction entropies and enthalpies. The average effective temperatures of the reactants and products of the ion-molecule reactions, which were obtained from ion-molecule equilibrium measurements, range from 295 to 350 K and do not depend significantly on the number of trapped ions, m/z value, ion trap q z value, reaction enthalpy/entropy, or the number of vibrational degrees of freedom for the seven reactions investigated. The average of the effective temperature values obtained for all seven thermometer reactions is 318?±?23 K, which indicates that linear quadrupole ion trap mass spectrometers can be used to study the structure(s) and reactivity of ions at near ambient temperature.
Figure
?  相似文献   

2.
Conventionally, quadrupole ion trap mass spectrometers eject ions of different mass-to-charge ratio (m/z) in a sequential fashion by performing a scan of the rf trapping voltage amplitude. Due to the inherent sparsity of most mass spectra, the detector measures no signal for much of the scan time. By exploiting this sparsity property, we propose a new compressive and multiplexed mass analysis approach—multi Resonant Frequency Excitation (mRFE) ejection. This new approach divides the mass spectrum into several mass subranges and detects all the subrange spectra in parallel for increased mass analysis speed. Mathematical estimation of standard mass spectrum is demonstrated while statistical classification on the parallel measurements remains viable because of the sparse nature of the mass spectra. This method can reduce mass analysis time by a factor of 3–6 and increase system duty cycle by 2×. The combination of reduced analysis time and accurate compound classification is demonstrated in a commercial quadrupole ion trap (QIT) system.
Figure
?  相似文献   

3.
The metastable decompositions of trimethylsilylmethanol, (CH3)3SiCH2OH (MW: 104, 1) and methoxytrimethylsilane, (CH3)3SiOCH3 (MW: 104, 2) upon electron ionization have been investigated by use of mass-analyzed ion kinetic energy (MIKE) spectroscopy and D labeling. The metastable ions of 1 ·+ decompose to give the fragment ions m/z 89 (CH 3 · loss) and 73 (·CH2OH loss), whereas those of 2 ·+ only yield the fragment ion m/z 89 (CH 3 · loss). The latter fragment ion is generated by loss of a methyl radical from the trimethylsilyl group via a simple cleavage reaction as shown by D labeling. However, the fragment ions m/z 89 and 73 from 1 ·+ are generated following an almost statistical exchange of the original methyl and methylene hydrogen atoms in the molecular ion as shown also by D labeling. This exchange indicates a complex rearrangement of the molecular ion of 1 ·+ prior to metastable decomposition for which as key step a 1,2-trimethylsilyl group migration from carbon to oxygen is suggested. A different behavior is also found between the source-generated m/z 89 ions from 1 ·+ which decompose in the metastable time region to give ions m/z 61 by loss of ethylene and those from 2 ·+ which decompose in the metastable region to yield ions m/z 59 by elimination of formaldehyde.  相似文献   

4.
An auxiliary rf waveform of the same amplitude and phase applied to all the rods of an ion accumulation multipole creates an m/z-dependent axial pseudo potential. Controlled decrease of the auxiliary rf amplitude releases ions from the accumulation multipole sequentially from high to low m/z. The slope of the auxiliary rf voltage ramp is adjusted so that ions of different m/z reach the center of the ICR cell at the same time point, which mitigates the typical time dispersion observed in external source FT-ICR and extends the observable mass range for a single data acquisition by 2- to 3-fold. For complex mixture analysis, twice the number of elemental compositions are assigned when the auxiliary rf ejection is applied compared with the standard gated trapping.
Figure
?  相似文献   

5.
Resolving power of about 12,000 000 at m/z 675 has been achieved on low field homogeneity 4.7 T magnet using a dynamically harmonized Fourier transform ion cyclotron resonance (FT ICR) cell. Mass spectra of the fine structure of the isotopic distribution of a peptide were obtained and strong discrimination of small intensity peaks was observed in case of resonance excitation of the ions of the whole isotopic cluster to the same cyclotron radius. The absence of some peaks from the mass spectra of the fine structure was explained basing on results of computer simulations showing strong ion cloud interactions, which cause the coalescence of peaks with m/z close to that of the highest magnitude peak. The way to prevent peak discrimination is to excite ion clouds of different m/z to different cyclotron radii, which was demonstrated and investigated both experimentally and by computer simulations.
Figure
?  相似文献   

6.
We describe the implementation and characterization of activated ion electron transfer dissociation (AI-ETD) on a hybrid QLT-Orbitrap mass spectrometer. AI-ETD was performed using a collision cell that was modified to enable ETD reactions, in addition to normal collisional activation. The instrument manifold was modified to enable irradiation of ions along the axis of this modified cell with IR photons from a CO2 laser. Laser power settings were optimized for both charge (z) and mass to charge (m/z) and the instrument control firmware was updated to allow for automated adjustments to the level of irradiation. This implementation of AI-ETD yielded 1.6-fold more unique identifications than ETD in an nLC-MS/MS analysis of tryptic yeast peptides. Furthermore, we investigated the application of AI-ETD on large scale analysis of phosphopeptides, where laser power aids ETD, but can produce b- and y-type ions because of the phosphoryl moiety’s high IR adsorption. nLC-MS/MS analysis of phosphopeptides derived from human embryonic stem cells using AI-ETD yielded 2.4-fold more unique identifications than ETD alone, demonstrating a promising advance in ETD sequencing of PTM containing peptides.
Figure
?  相似文献   

7.
Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the sub-micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for elemental formula assignment based on exact mass measurement. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy, and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissue was measured with 150 μm spatial resolution (75 μm primary ion spot size) with mass resolving power (mm 50%) of 67,500 (at m/z 750) and root-mean-square measurement accuracy less than two parts-per-million for intact phospholipids, small molecules and fragments. For the first time, ultra-high mass resolving power SIMS has been demonstrated, with mm 50%?>?3,000,000. Higher spatial resolution capabilities of the platform were tested at a spatial resolution of 20 μm. The results represent order of magnitude improvements in mass resolving power and mass measurement accuracy for SIMS imaging and the promise of the platform for ultra-high mass resolving power and high spatial resolution imaging.
Figure
C60 secondary ion FT-ICR MS provides unprecedented mass resolving power and mass accuracy for SIMS imaging of biological tissue sections. Overlaid selected ion images from rat brain (left) and high spatial resolution imaging of organic dye underneath a TEM grid (right).  相似文献   

8.
Data-independent mass spectrometry activates all ion species isolated within a given mass-to-charge window (m/z) regardless of their abundance. This acquisition strategy overcomes the traditional data-dependent ion selection boosting data reproducibility and sensitivity. However, several tandem mass (MS/MS) spectra of the same precursor ion are acquired during chromatographic elution resulting in large data redundancy. Also, the significant number of chimeric spectra and the absence of accurate precursor ion masses hamper peptide identification. Here, we describe an algorithm to preprocess data-independent MS/MS spectra by filtering out noise peaks and clustering the spectra according to both the chromatographic elution profiles and the spectral similarity. In addition, we developed an approach to estimate the m/z value of precursor ions from clustered MS/MS spectra in order to improve database search performance. Data acquired using a small 3 m/z units precursor mass window and multiple injections to cover a m/z range of 400–1400 was processed with our algorithm. It showed an improvement in the number of both peptide and protein identifications by 8 % while reducing the number of submitted spectra by 18 % and the number of peaks by 55 %. We conclude that our clustering method is a valid approach for data analysis of these data-independent fragmentation spectra. The software including the source code is available for the scientific community.
Figure
?  相似文献   

9.
In addition to the well-known SO2 loss, there are several additional fragmentation pathways that gas-phase anions derived from N-phenyl benzenesulfonamides and its derivatives undergo upon collisional activation. For example, N-phenyl benzenesulfonamide fragments to form an anilide anion (m/z 92) by a mechanism in which a hydrogen atom from the ortho position of the benzenesulfonamide moiety is specifically transferred to the charge center. Moreover, after the initial SO2 elimination, the product ion formed undergoes primarily, an inter-annular H2 loss to form a carbazolide anion (m/z 166) because the competing intra-annular H2 loss is significantly less energetically favorable. Results from tandem mass spectrometric experiments conducted with deuterium-labeled compounds confirmed that the inter-ring mechanism is the preferred pathway. Furthermore, N-phenyl benzenesulfonamide and its derivatives also undergo a phenyl radical loss to form a radical ion with a mass-to-charge ratio of 155, which is in violation of the so-called “even-electron rule.”
Figure
?  相似文献   

10.
The importance of the mass spectral product ion structure is highlighted in quantitative assays, which typically use multiple reaction monitoring (MRM), and in the discovery of novel metabolites. Estradiol is an important sex steroid whose quantitation and metabolite identification using tandem mass spectrometry has been widely employed in numerous clinical studies. Negative electrospray ionization tandem mass spectrometry of estradiol (E2) results in several product ions, including the abundant m/z 183 and 169. Although m/z 183 is one of the most abundant product ions used in many quantitative assays, the structure of m/z 183 has not been rigorously examined. We suggest a structure for m/z 183 and a mechanism of formation consistent with collision induced dissociation (CID) of E2 and several stable isotopes ([D4]-E2, [13C6]-E2, and [D1]-E2). An additional product ion from E2, namely m/z 169, has also been examined. MS3 experiments indicated that both m/z 183 and m/z 169 originate from only E2 [M – H] m/z 271. These ions, m/z 183 and m/z 169, were also present in the collision induced decomposition mass spectra of other prominent estrogens, estrone (E1) and estriol (E3), indicating that these two product ions could be used to elucidate the estrogenic origin of novel metabolites. We propose two fragmentation schemes to explain the CID data and suggest a structure of m/z 183 and m/z 169 consistent with several isotopic variants and high resolution mass spectrometric measurements.   相似文献   

11.
Over the last two decades, native mass spectrometry (MS) has emerged as a valuable tool to study intact proteins and noncovalent protein complexes. Studied experimental systems range from small-molecule (drug)–protein interactions, to nanomachineries such as the proteasome and ribosome, to even virus assembly. In native MS, ions attain high m/z values, requiring special mass analyzers for their detection. Depending on the particular mass analyzer used, instrumental mass resolution does often decrease at higher m/z but can still be above a couple of thousand at m/z 5000. However, the mass resolving power obtained on charge states of protein complexes in this m/z region is experimentally found to remain well below the inherent instrument resolution of the mass analyzers employed. Here, we inquire into reasons for this discrepancy and ask how native MS would benefit from higher instrumental mass resolution. To answer this question, we discuss advantages and shortcomings of mass analyzers used to study intact biomolecules and biomolecular complexes in their native state, and we review which other factors determine mass resolving power in native MS analyses. Recent examples from the literature are given to illustrate the current status and limitations.
Figure
?  相似文献   

12.
An ion mobility/time-of-flight mass spectrometer (IMS/TOF MS) platform that allows for resonant excitation collision induced dissociation (CID) is presented. Highly efficient, mass-resolved fragmentation without additional excitation of product ions was accomplished and over-fragmentation common in beam-type CID experiments was alleviated. A quadrupole ion guide was modified to apply a dipolar AC signal across a pair of rods for resonant excitation. The method was characterized with singly protonated methionine enkephalin and triply protonated peptide angiotensin I, yielding maximum CID efficiencies of 44 % and 84 %, respectively. The Mathieu qx,y parameter was set at 0.707 for these experiments to maximize pseudopotential well depths and CID efficiencies. Resonant excitation CID was compared with beam-type CID for the peptide mixture. The ability to apply resonant waveforms in mobility-resolved windows is demonstrated with a peptide mixture yielding fragmentation over a range of mass-to-charge (m/z) ratios within a single IMS-MS analysis.
Figure
?  相似文献   

13.
Eight ionic liquids (ILs) are subjected to both positive-ion and negative-ion direct analyses in real time (DART) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS). First, their ability to deliver evenly distributed cluster ion series covering a wide m/z range is explored. Then, one of the ILs exhibiting particularly useful cluster ion series in either ion polarity is applied for mass calibration. Using 1-butyl-3-methylimidazolium tricyanomethide delivers positive cluster ions suitable for mass calibration in the m/z 100–4,000 range and covers the m/z 100–2,000 range in negative-ion DART-MS. The corresponding mass reference lists are provided for either polarity. Furthermore, based on 1-butyl-3-methylimidazolium tricyanomethide, a high-mass record of m/z?>?5,000 for positive-ion DART-MS is presented. The mass calibration procedure is finally validated by application to established standard compounds such as polydimethylsiloxanes, perfluorononanoic acid, and Ultramark 1621, a mixture of hexakis (fluoroalkoxy) phosphazenes. Further proof is presented by consistent exact mass differences between adjacent cluster ions.
Figure
Direct analysis in real time mass spectrometry (DART-MS) can deliver ionic liquid cluster ions reaching well beyond m/z 5,000. These positive and negative cluster ions may well serve for wide-range mass calibration in DART-MS  相似文献   

14.
The fragmentation reactions of the MH+ ions as well as the b7, a7, and a7* ions derived therefrom have been studied in detail for the octapeptides MAAAAAAA, AAMAAAAA, AAAAMAAA, and AAAAAAMA. Ionization was by electrospray using a QqToF mass spectrometer, which allowed a study of the evolution of the fragmentation channels as a function of the collision energy. Not surprisingly, the product ion mass spectra for the b7 ions are independent of the original precursor sequence, indicating macrocyclization and reopening to the same mixture of protonated oxazolones prior to fragmentation. The results show that this sequence scrambling results in a distinct preference to place the Met residue in the C-terminal position of the protonated oxazolones. The a7 and a7* ions also produce product ion mass spectra independent of the original peptide sequence. The results for the a7 ions indicate that fragmentation occurs primarily from an amide structure analogous to that observed for a4 ions (Bythell et al. in J Am Chem Soc 132:14766–14779, 2010). Clearly, the rearrangement reaction they have proposed applies equally well to an ions as large as a7. The major fragmentation modes of the MH+ ions at low collision energies produce b7, b6, and b5 ions. As the collision energy is increased further fragmentation of these primary products produces, in part, non-direct sequence ions, which become prominent at lower m/z values, particularly for the peptides with the Met residue near the N-terminus.
Figure
?  相似文献   

15.
Laser-induced fluorescence is used to visualize populations of gaseous ions stored in a quadrupole ion trap (QIT) mass spectrometer. Presented images include the first fluorescence image of molecular ions collected under conditions typically used in mass spectrometry experiments. Under these “normal” mass spectrometry conditions, the radial (r) and axial (z) full-width at half maxima (FWHM) of the detected ion cloud are 615 and 214 μm, respectively, corresponding to ~6 % of r 0 and ~3 % of z 0 for the QIT used. The effects on the shape and size of the ion cloud caused by varying the pressure of helium bath gas, the number of trapped ions, and the Mathieu parameter q z are visualized and discussed. When a “tickle voltage” is applied to the exit end-cap electrode, as is done in collisionally activated dissociation, a significant elongation in the axial, but not the radial, dimension of the ion cloud is apparent. Finally, using spectroscopically distinguishable fluorophores of two different m/z values, images are presented that illustrate stratification of the ion cloud; ions of lower m/z (higher q z ) are located in the center of the trapping region, effectively excluding higher m/z (lower q z ) ions, which form a surrounding layer. Fluorescence images such as those presented here provide a useful reference for better understanding the collective behavior of ions in radio frequency (rf) trapping devices and how phenomena such as collisions and space-charge affect ion distribution.
Figure
?  相似文献   

16.
In this study, C-terminal protonated dipeptide eliminations were reported for both b 5 and b 4 ions of side chain hydroxyl group (–OH) containing pentapeptides. The study utilized the model C-terminal amidated pentapeptides having sequences of XGGFL and AXVYI, where X represents serine (S), threonine (T), glutamic acid (E), aspartic acid (D), or tyrosine (Y) residue. Upon low-energy collision-induced dissociation (CID) of XGGFL (where X?=?S, T, E, D, and Y) model peptide series, the ions at m/z 279 and 223 were observed as common fragments in all b 5 and b 4 ion (except b 4 ion of YGGFL) mass spectra, respectively. By contrast, peptides, namely SMeGGFL-NH2 and EOMeGGFL-NH2, did not show either the ion at m/z 279 or the ion at m/z 223. It is shown that the side chain hydroxyl group is required for the possible mechanism to take place that furnishes the protonated dipeptide loss from b 5 and b 4 ions. In addition, the ions at m/z 295 and 281 were detected as common fragments in all b 5 and b 4 ion (except b 4 ion of AYVYI) mass spectra, respectively, for AXVYI model peptide series. The MS4 experiments exhibited that the fragment ions at m/z 279, 223, 295, and 281 entirely reflect the same fragmentation behavior of [M?+?H]+ ion generated from commercial dipeptides FL-OH, GF-OH, YI-OH, and VY-OH. These novel eliminations reported here for b 5 and b 4 ions can be useful in assigning the correct and reliable peptide sequences for high-throughput proteomic studies.
Figure
?  相似文献   

17.
A simple collision model for multiple collisions occurring in quadrupole type mass spectrometers was derived and tested with leucine enkaphalin a common mass spectrometric standard with well-characterized properties. Implementation of the collision model and Rice-Ramsperger-Kassel-Marcus (RRKM) algorithm into a spreadsheet software allowed a good fitting of the calculated data to the experimental survival yield (SY) versus collision energy curve. In addition, fitting also ensured to estimate the efficiencies of the kinetic to internal energy conversion for Leucine enkephalin in quadrupole-time-of-flight and triple quadrupole instruments. It was observed that the experimental SY versus collision energy curves for the leucine enkephalin can be described by the Rice-Ramsperger-Kassel (RRK) formalism by reducing the total degrees of freedom (DOF) to about one-fifth. Furthermore, this collision model with the RRK formalism was used to estimate the critical energy (E o ) of lithiated polyethers, including polyethylene glycol (PEG), polypropylene glycol (PPG), and polytetrahydrofurane (PTHF) with degrees of freedom similar to that of leucine enkephalin. Applying polyethers with similar DOF provided the elimination of the effect of DOF on the unimolecular reaction rate constant. The estimated value of E o for PEG showed a relatively good agreement with the value calculated by high-level quantum chemical calculations reported in the literature. Interestingly, it was also found that the E o values for the studied polyethers were similar.
Figure
?  相似文献   

18.
We describe and characterize an improved implementation of ETD on a modified hybrid linear ion trap-Orbitrap instrument. Instead of performing ETD in the mass-analyzing quadrupole linear ion trap (A-QLT), the instrument collision cell was modified to enable ETD. We partitioned the collision cell into a multi-section rf ion storage and transfer device to enable injection and simultaneous separate storage of precursor and reagent ions. Application of a secondary (axial) confinement voltage to the cell end lens electrodes enables charge-sign independent trapping for ion–ion reactions. The approximately 2-fold higher quadrupole field frequency of this cell relative to that of the A-QLT enables higher reagent ion densities and correspondingly faster ETD reactions, and, with the collision cell’s longer axial dimensions, larger populations of precursor ions may be reacted. The higher ion capacity of the collision cell permits the accumulation and reaction of multiple full loads of precursor ions from the A-QLT followed by FT Orbitrap m/z analysis of the ETD product ions. This extends the intra-scan dynamic range by increasing the maximum number of product ions in a single MS/MS event. For analyses of large peptide/small protein precursor cations, this reduces or eliminates the need for spectral averaging to achieve acceptable ETD product ion signal-to-noise levels. Using larger ion populations, we demonstrate improvements in protein sequence coverage and aggregate protein identifications in LC-MS/MS analysis of intact protein species as compared to the standard ETD implementation.
Figure
?  相似文献   

19.
Obtaining unambiguous linkage information between sugars in oligosaccharides is an important step in their detailed structural analysis. An approach is described that provides greater confidence in linkage determination for linear oligosaccharides based on multiple-stage tandem mass spectrometry (MSn, n >2) and collision-induced dissociation (CID) of Z1 ions in the negative ion mode. Under low energy CID conditions, disaccharides 18O-labeled on the reducing carbonyl group gave rise to Z1 product ions (m/z 163) derived from the reducing sugar, which could be mass-discriminated from other possible structural isomers having m/z 161. MS3 CID of these m/z 163 ions showed distinct fragmentation fingerprints corresponding to the linkage types and largely unaffected by sugar unit identities or their anomeric configurations. This unique property allowed standard CID spectra of Z1 ions to be generated from a small set of disaccharide samples that were representative of many other possible isomeric structures. With the use of MSn CID (n = 3 – 5), model linear oligosaccharides were dissociated into overlapping disaccharide structures, which were subsequently fragmented to form their corresponding Z1 ions. CID data of these Z1 ions were collected and compared with the standard database of Z1 ion CID using spectra similarity scores for linkage determination. As the proof-of-principle tests demonstrated, we achieved correct determination of individual linkage types along with their locations within two trisaccharides and a pentasaccharide.
Figure
?  相似文献   

20.
Aromatase (CYP 19A1) is a key steroidogenic enzyme that catalyzes the conversion of androgen to estrogen. In this study, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for aromatase inhibitor screening was developed and validated. The substrate androstenedione was incubated with human CYP 19A1 supersomes in the presence of NADPH for 30 min, and estrone formation was determined by LC-MS/MS analysis. Cortisone was used as internal standard. The incubation mixture was extracted using a liquid-liquid extraction method with ethyl acetate. Chromatographic separation was achieved using a C18 column (3.0?×?50 mm, 2.7 μm) with a mobile phase consisting of 0.1 % formic acid/acetonitrile adopting gradient elution at a flow rate of 0.4 mL/min. The mass spectrometer was operated in positive electrospray ionization mode. The precursor-product ion pairs used for multiple reaction monitoring were m/z 287→97 (androstenedione), m/z 271?→?159 (estrone), and m/z 361?→?163 (IS, cortisone). The developed method met the required criteria for the validation of bioanalytical methods. The validated method was successfully applied to evaluate aromatase inhibitory activity of plants extracts of Simaroubaceae.
Figure
Determination of estrone formation by LC-MS/MS analysis for aromatase inhibitor screening  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号