首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A composite material based on mixed-valence ruthenium and cobalt oxides, electrodeposited on the surface of a screen printed electrode, exhibits high catalytic activity in the electrooxidation of uric acid, xanthine, and hypoxanthine. Catalysis manifests itself as a decrease in the substrate oxidation overvoltage and an increase in current at the potential of modifier oxidation. A method is proposed for the simultaneous amperometric detection of two-component systems uric acid–xanthine, xanthine–hypoxanthine, and uric acid–hypoxanthine using a screen printed electrode with two working electrodes modified by this composite. The dependence of the analytical signal on the concentration of analytes is linear in the range 5 × 10–8 to 5 × 10–3 M for uric acid and xanthine and from 5 × 10–7 to 5 × 10–3 M for hypoxanthine.  相似文献   

2.
An amperometric enzyme electrode for the determination of hypoxanthine in fish meat is described. The hypoxanthine sensor was prepared from xanthine oxidase immobilized by covalent binding to cellulose triacetate and a carbon paste electrode containing hydroxymethylferrocene. The xanthine oxidase membrane was retained behind a dialysis membrane at a carbon paste electrode. The sensor showed a current response to hypoxanthine due to the bioelectrocatalytic oxidation of hypoxanthine, in which hydroxymethyiferrocene served as an electron-transfer mediator. The limit of detection is 6 × 10?7 M, the relative standard deviation is 2.8% (n=28) and the response is linear up to 7 × 10?4 M. The sensor responded rapidly to a low hypoxanthine concentration (7 × 10?4 M), the steady-state current response being achieved in less than 1 min, and was stable for more than 30 days at 5 ° C. Results for tuna samples showed good agreement with the value determined by the conventional method.  相似文献   

3.
Single‐walled carbon nanotube (SWNT) and room temperature ionic liquid (i.e., 1‐butyl‐3‐methylimidazolium hexaflourophosphate, BMIMPF6) were used to fabricate paste modified glassy electrode (GCE). It was found that the electrode showed sensitive voltammetric response to xanthine (Xt). The detection limit was 2.0×10?9 M and the linear range was 5.0×10?9 to 5.0×10?6 M. The electrode also displayed good selectivity and repeatability. In the presence of uric acid (UA) and hypoxanthine (Hx) the response of Xt kept almost unchanged. Thus this electrode could find application in the determination of Xt in some real samples. The analytical performance of the BMIMPF6‐SWNT/GCE was demonstrated for the determination of Xt in human serum and urine samples.  相似文献   

4.
Electrochemical behavior of dopamine at the RuO2‐modified vertically aligned carbon nanotubes electrode was investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The RuO2‐modified carbon nanotube electrode showed higher electrocatalytic activity towards the oxidation of dopamine than the MWNTs electrode in 0.10 M phosphate buffer solution. At an applied potential of +0.4 V, the RuO2/MWNTs electrode exhibited a wide detection range up to 3.6×10?3 M with detection limit of 6.0×10?8 M (signal/noise=3) for dopamine determination. Meanwhile, the optimized sensor for dopamine displayed a sensitivity of 83.8 μA mM?1 and response time of 5 s with addition of 0.20 mM dopamine. In addition, DPV experiment revealed that interfering species such as ascorbic acid and uric acid could be effectively avoided. The RuO2/MWNTs electrode presents stable, highly sensitive, favorable selectivity and fast amperometric response of dopamine.  相似文献   

5.
Near-infrared semiconductor laser fluorimetry is applied to assays of xanthine and xanthine oxidase. The fluorescence of indocyanine green in the near-infrared region is quenched by hydrogen peroxide. Xanthine is converted to uric acid by xanthine oxidase, in a reaction which also produces hydrogen peroxide; xanthine can be determined by measuring the decrease in fluorescence intensity of the dye added to the sample solution. The calibration graph for xanthine is linear from 5 × 10?5 M to 5 × 10?7 M. The enzyme activity can also be determined.  相似文献   

6.
The oxidation behavior of palladium, ruthenium and iridium powders of different grain sizes was investigated by TG, DTA and X-ray methods. The solid oxides formed during heating up (PdO, RuO2, IrO2) show different stability and decomposition temperatures depending on the oxygen pressure. The kinetics of the reaction MeOx → Me+x/2 O2 is discussed. High temperature X-ray studies confirmed the strong anisotropy of thermal expansion in the case of RuO2 and IrO2. The thermal expansion behavior of these oxides is compared to that of other rutile-type oxides.  相似文献   

7.
Platinum nanoparticles (Ptnano) decorated multiwalled carbon nanotubes (MWCNTs)–1‐octyl‐3‐methylimidazolium hexafluorophosphate ([omim][PF6]) composite material (MWCNTs‐Ptnano‐[omim][PF6]) was fabricated and characterized for the first time. In the presence of [omim][PF6], more Ptnano could deposit on MWCNTs. The average diameter of the deposited Ptnano was about 5 nm. The composite material film coated glassy carbon electrode (GCE) exhibited sensitive voltammetric response to theophylline (TP). Under the optimized conditions (i.e., preconcentration for 2 minutes on open circuit in 0.10 M pH 3.0 phosphate buffer), the anodic peak current of TP at about 1.1 V (vs. SCE) was linear to TP concentration over the range of 1.0×10?8–1.0×10?5 M. The detection limit was estimated to be 8.0×10?9 M. The modified electrode was successfully applied to the determination of TP in medicine tablet and green tea. In addition, the voltammetric responses of hypoxanthine (HX), xanthine (Xan) and uric acid (UA) on the MWCNTs‐Ptnano‐[omim][PF6]/GCE were also discussed.  相似文献   

8.
《Analytical letters》2012,45(13):2011-2025
Abstract

A stripping method for the determination of xanthine at the submicromolar concentration level is described. The method is based on controlled adsorptive accumulation of xanthine at a thin-film mercury electrode followed by a linear scan voltammetry measurement of the surface species. Optimum experimental conditions were found to be the use of a 5.0 × 10?3 M NaOH solution, an accumulation potential of 0.00 V, and a scan rate of 20 mV s?1. The response of xanthine is linear over the concentration range 20–140 ppb. For an accumulation time of 30 min, the detection limit was found to be 36 ppt (2.3 × 10?10 M). The more convenient relations for measuring xanthine in the presence of the metals, hypoxanthine, amino acids, and other nitrogenated bases were also investigated. The utility of the method is demonstrated by the presence of xanthine in adenosine-5′-triphosphate or DNA.  相似文献   

9.
A PVC/TTF‐TCNQ composite electrode has been employed as detector in a flow injection system. The proposed method allows the simultaneous detection of ascorbic acid (AA) and uric acid (UA) in mixtures by using a FIA system in a simple manner, without pre‐treatment or modified electrode. This method is based on the amperometric determination of (a) ascorbic acid at 0.15 V and (b) both analytes at 0.35 V, being the response linear in the range 1×10?2–4×10?4 M for both analytes with detection limits (S/N=3) of 1.2×10?4 M and 8.1×10?5 M for AA and UA, respectively.  相似文献   

10.
The fabrication and application of a new electrochemical detector for use in HPLC is presented. The detector consists of an electrode modified with a composite film composed of acetylene black and dihexadecyl hydrogen phosphate. The electrochemistry of xanthine and hypoxanthine at this chemically modified electrode (CME) was investigated by cyclic voltammetry. It is found that the CME exhibits efficient electrocatalytic activity towards xanthine and hypoxanthine, with good sensitivity, stability, and lifetime. The linear ranges cover three orders of magnitude, and the detection limits are 6.0 × 10?8 mol L?1 for xanthine and 2.5 × 10?7 mol L?1 for hypoxanthine (at an S/N ratio of 3). The method was coupled to in-vivo microdialysis sampling and successfully applied to quantify xanthine and hypoxanthine in rat striatal microdialysates of freely moving rats.  相似文献   

11.
Stripping voltammetric analysis of ruthenium with a platinum RDE was studied in the concentration range from 5×10?7 to 1.2×10?5M RuO42?, where linear dependence of the anodic peak height on the ruthenate concentration was obtained. Special attention has been paid to a simple preparation of the sample for analysis. Ruthenate can be prepared directly in the electrolytic vessel from the ruthenium compounds by oxidation with potassium persulphate in alkaline medium. As a supporting electrolyte 10?2 to 5×10?2M K2S2O8 with 10?1 to 1 M KOH was used.  相似文献   

12.
Compounds formed by the insertion of lithium into the rutile structure hosts RuO2 and IrO2 were studied by X-ray and neutron powder diffraction techniques. Compositions in the range LixMO2, M = Ru or Ir, 0 < x < 1 are two-phase materials consisting of unreacted host, x = 0, and limiting compositions x = 0.9 in both cases. Preparation of compounds with x > 1 was unsuccessful. Li0.9RuO2 and Li0.9IrO2 have orthorhombic cells with a = 5.062(3), b = 4.967(4), c = 2.771(4) and a = 4.962(4), b = 4.758(4), c = 3.108(6), respectively. Compared to the host rutile (tetragonal) cells those of the insertion compounds are greatly expanded along [100] and [010], ~0.5 Å for both, and contracted along [001], by ~0.3 Å for Li0.9RuO2 and 0.05 Å for Li0.9IrO2. The space group for both insertion phases appears to be Pnnm, a subgroup of the rutile space group P42mnm. The structure of Li0.9RuO2 was solved from neutron diffraction data. Lithium exists as Li+ in octahedral sites. The LiO coordination is highly regular with two bonds at 2.05(1) Å and four at 2.08(2) Å. The overall structure is essentially an ordered NiAs-type very similar to but more regular than the previously reported LiMoO2. Attempts to solve the structure of Li0.9IrO2 from both X-ray and neutron powder data were unsuccessful due, presumably, to severe preferred orientation.  相似文献   

13.
The determination of acetaldehyde was achieved by monitoring the chemiluminescence emission from the luminol-potassium hexacyanoferrate (III) reaction in the presence of xanthine oxidase. The linear range was three orders of magnitude, the detection limit (2σ) was 4 × 10?7 M and the relative standard deviation (n = 5) was 10.6% for 4.3 × 10?7 M. No interference was observed from seven organic and inorganic species at a 1000-fold excess relative to a concentration of 1 × 10?5 M acetaldehyde.  相似文献   

14.
Iodide is determined after oxidation with nitrous acid in 5 M hydrochloric acid to ICl?2. The ion-pair formed with rhodamine B is extracted into toluene and measured spectrophotometrically (0.5–5 × 10?5 M) or spectrofluorimetrically (1–10 × 10?6 M). The relative standard deviations were 1.8% for the determination of 5 × 10?6 M iodide (n = 5) by spectrofluorimetry and 2.3% (n = 50) for 1 × 10?5 M iodide by spectrophotometry. Periodate, iodate and iodine responded exactly as iodide.  相似文献   

15.
A xanthine biosensor was fabricated by the covalent immobilization of xanthine oxidase (XO) onto a functionalized conducting polymer (Poly‐5, 2′: 5′, 2″‐terthiophine‐3‐carboxylic acid), poly‐TTCA through the formation of amide bond between carboxylic acid groups of poly‐TTCA and amine groups of enzyme. The immobilization of XO onto the conducting polymer (XO/poly‐TTCA) was characterized using cyclic voltammetry, quartz crystal microbalance (QCM), and X‐ray photoelectron spectroscopy (XPS) techniques. The direct electron transfer of the immobilized XO at poly‐TTCA was found to be quasireversible and the electron transfer rate constant was determined to be 0.73 s?1. The biosensor efficiently detected xanthine through oxidation at +0.35 V and reduction at ?0.25 V (versus Ag/AgCl) of enzymatically generated hydrogen peroxide. Various experimental parameters, such as pH, temperature, and applied potential were optimized. The linear dynamic ranges of anodic and cathodic detections of xanthine were between 5.0×10?6?1.0×10?4 M and 5.0×10?7 to 1.0×10?4 M, respectively. The detection limits were determined to be of 1.0×10?6 M and 9.0×10?8 M with anodic and cathodic processes, respectively. The applicability of the biosensor was tested by detecting xanthine in blood serum and urine real samples.  相似文献   

16.
A novel carbon paste electrode modified with ZrO2 nanoparticles and an ionic liquid (n-hexyl-3- methylimidazolium hexafluorophosphate) was fabricated. The electrochemical study of the modified electrode, as well as its efficiency for simultaneous voltammetric oxidation of dopamine and uric acid is described. The electrode was also employed to study the electrochemical oxidation of dopamine and uric acid, using cyclic voltammetry, chronoamperometry and square wave voltammetry as diagnostic techniques. Square wave voltammetry exhibits linear dynamic range from 1.0 × 10?6 to 9.0 × 10?4 M for dopamine. Also, square wave voltammetry exhibits linear dynamic range from 9.0 × 10?6–1.0 × 10?3 M for uric acid. The modified electrode displayed strong function for resolving the overlapping voltammetric responses of dopamine and uric acid into two well-defined voltammetric peaks. In the mixture containing dopamine and uric acid, the two compounds can be well separated from each other with potential difference of 155 mV, which is large enough to determine dopamine and uric acid individually and simultaneously. Finally, the modified electrode was used for determination of dopamine and uric acid in real samples.  相似文献   

17.
A study of the corrosion resistance and electrochemical behavior of titanium anodes with active coatings prepared from mixed oxides iridium, ruthenium, and titanium (OIRTA) is continued. The dependence of the catalytic activity, selectivity, and corrosion resistance of these anodes with x mol % RuO2 + (30 ? x ) mol % IrO2 + 70 mol % TiO2 is studied in conditions of chlorine electrolysis on the ratio of concentrations of IrO2 and RuO2 in them at a constant loading of iridium in the coatings. It is established that the maximum corrosion resistance and selectivity is inherent in OIRTA with the RuO2 concentration close to 4 mol %. Partial curves, which describe the dependence of the rates of dissolution of iridium out of OIRTA and the evolution of chlorine and oxygen in them on the electrode potential, are obtained. The dependence of the rates of these processes on the solution pH, the concentration of NaCl in it, and the thickness of the active layer is studied. It is shown that the rate of dissolution of iridium out of OIRTA and the concentration of oxygen in chlorine at a constant potential increase approximately proportionally to the coating thickness, from whence it follows that the said processes proceed over the entire depth of the coating. An assumption is put forth that the chlorine evolution on OIRTA of the optimum composition, with a loading of iridium equal to 2.5 g m?2, at high anodic currents occurs in an outer-kinetics regime in the presence of diffusion limitations on the removal of chlorine out of the coating's depth.  相似文献   

18.
The ion-oxygen conductivity of apatite-like compounds based on lanthanum silicates and germanates La10A6O27 (A = Si, Ge), La10?x CaxSi6O27?δ (x = 0.25, 0.5, 1.0), La9.75Ca0.25Ge6O27?δ and La9.33+δSi6?x AlxO26(x=0.4, 0.8, 1.5) is studied in the interval of partial oxygen pressures pO2 extending from 10?16 to 105 Pa, at temperatures of 500–1000°C. The electroconductivity of undoped compounds La10A6O27 (A = Si, Ge) exceeds that of yttria-stabilized zirconia. The electroconductivity of lanthanum germanate (1.7 × 10?2 and 8.5 × 10?2S cm?1 at 700 and 900°C, respectively) is substantially higher than that of lanthanum silicate (9.8 × 10?3 and 3.5 × 10?2 S cm?1 at 700 and 900°C). Doping lanthanum germanate with calcium raises its electroconductivity (2.7 × 10?2 and 1.3 × 10?1 S cm?1 for La9.75Ca0.25Ge6O27?δ at 700 and 900°C). Conversely, doping lanthanum silicate with ions of calcium or aluminum reduces the conductivity. In the pO2 interval studied, the above compounds are ionic conductors and represent a class of solid electrolytes of promise for various electrochemical devices.  相似文献   

19.
In this paper, a pre‐anodized inlaying ultrathin carbon paste electrode (PAIUCPE) with 316L as a matrix was constructed by a simple and fast electrochemical pretreatment. Using xanthine (Xa) and hypoxanthine (HXa) as the target compounds, the pH effects compositions of buffer solution, the accumulation times, hydrogen bond catalysis, degree of auxiliary electrode reaction on the size of peak currents (Ip) of Xa and HXa was discussed in detail. Also, it was proposed that Xa and HXa were respectively absorbed at the surface of PAIUCPE through hydrogen bonding. The influencing mechanisms of the PAIUCEP on electrochemical oxidation of Xa and HXa were explained in detail. Moreover, the linear relationships for the Xa and HXa were obtained in the range of 6×10?8–3×10?5 mol/L and 2×10?7–7×10?5 mol/L, respectively. The detection limits for the Xa and HXa were 1.2×10?8 mol/L and 5.7×10?8 mol/L, respectively. Moreover, this proposed method could be applied to determine the Xa and HXa in human urine simultaneously with satisfactory results.  相似文献   

20.
Dielectric polarization of solutions of un-ionized linear poly(methacrylic acid) in polar associated liquids is studied in the temperature range 20–50°C. The solutions are in methanol, with the molar fraction of polymer units x 2 = (3 × 10?3)?(1.5 × 10?2), and in water, with x 2 = (4 × 10?5)?(4 × 10?3). The permittivity ε12 of the polyacid solutions in methanol is shown to be lower than the permittivity of the pure solvent ε1; the permittivity of the polyacid solutions in water exceeds ε1 of water in the concentration range x 2 = (4 × 10?5)?(2.13 × 10?4) and becomes lower than ε1 as the polymer concentration in the solution increases further. A procedure for estimating the dipole moment μ2 per monomer unit of the polymer macromolecule in solution is proposed. The estimation is based on Buckingham’s statistical polarization theory for a two-component mixture of polar molecules under the conditions of infinite dilution. The μ2 values amount to 2.76–2.14 D (x 2 < 1.5 × 10?2) in methanol at 20–50°C and to 11.4?3.8 D (x 2 < 2.13 × 10?4) in water at 20–40°C. The difference in the dipole moments of the polyacid and in the patterns of their temperature dependences in methanol and in water is due to the effects of the polyacid-solvent hydrogen bonding, to intramacromolecular hydrogen bonds, and to specificity of the local structure of the solvent. It is shown that the μ2 value corresponds to the dipole moment of the solvates and decreases with temperature owing to changes in the stoichiometry of the solvates, to the formation of cyclic associates in the macromolecule, and to conformational changes in the chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号