首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The geometrical conditions for the propagation of dislocations through the twins are applied to the main slip and twinning systems in-uranium. The energy of dislocations moving through a twin is calculated using the isotropic elasticity. It is shown that the principal slip system with the Burgers vector [100] can easily propagate only through the {130} compound twins. The possibility of uncommon slip systems in twins crossed by slip bands is thoroughly discussed.  相似文献   

2.
The forces on dislocations propagating through twins are calculated using the anisotropic elasticity. The anisotropic boundary force is calculated assuming that the twin boundary is of the welded type. The stresses necessary for the passage of dislocations through twins are compared with the estimated stresses for a homogeneous thermally activated nucleation of twins.  相似文献   

3.
Bismuth crystals are studied under the joint action of a pulse electric current and a constant magnetic field. It is shown that the combined effect of a constant magnetic field and pulse current leads to a substantial decrease in the mean linear density of twinning dislocations piled up at the boundaries of wedge twins. The decrease in the mean linear density of twinning dislocations is accompanied by a decrease in the microhardness of the samples.  相似文献   

4.
The phase and structural states of titanium spheres loaded by spherical converging shock waves of various intensities were studied layer by layer by means of X-ray diffraction, optical, and transmission electron microscopy. It was established that defects of different types (twins, dislocations, and adiabatic shear bands) are produced during high-rate deformation occurring in materials under such method of pulsed loading. The amount and distribution of the defects depend on the loading intensity. The presence of the ω-phase is revealed only in the layers near the external surface of the titanium sphere after low-intensity loading.  相似文献   

5.
Effects of cold rolling deformation on the microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel (HNASS) are investigated. Microstructure characterization shows that 70% cold rolling deformation results in significant refinement of the microstructure of this steel, with its average twin thickness reducing from 6.4 μm to 14 nm. Nanoindentation tests at different strain rates demonstrate that the hardness of the steel with nano-scale twins (nt-HNASS) is about 2 times as high as that of steel with micro-scale twins (mt-HNASS). The hardness of nt-HNASS exhibits a pronounced strain rate dependence with a strain rate sensitivity (m value) of 0.0319, which is far higher than that of mt-HNASS (m = 0.0029). nt-HNASS shows more significant load plateaus and a higher creep rate than mt-HNASS. Analysis reveals that higher hardness and larger m value of nt-HNASS arise from stronger strain hardening role, which is caused by the higher storage rate of dislocations and the interactions between dislocations and high density twins. The more significant load plateaus and higher creep rates of nt-HNASS are due to the rapid relaxation of the dislocation structures generated during loading.  相似文献   

6.
The method of etching dislocations is used to study the distribution of dislocations and twins in Fe-3% Si alloy single crystals prepared from the melt after plastic deformation with higher speed. The crystals are deformed by twinning in the 〈111〉 directions along the {112} planes and by slip in the 〈111〉 directions along the {110} planes. The results prove that the dislocations causing plastic deformation move in the {110} planes during both fast and slow deformation. The difference in the slip surfaces during fast and slow deformation is explained by the different number of cross slips per unit dislocation path.  相似文献   

7.
A new micromechanism of nucleating deformation twins in nanocrystalline and ultrafine-grained materials under action of severe mechanical stresses has been proposed and theoretically described. The mechanism is a subsequent splitting of grain-boundary dislocations into lattice partial and sessile grain-boundary dislocations. Ensembles of gliding partial dislocation forms deformation twins. The energy characteristics of this process are calculated. The nucleation of the twins is shown to be energetically profitable and can be athermic (without an energy barrier) under conditions of severe mechanical stress. The dependence of a critical stress at which the barrier-less nucleation of twins took place on the widths of these twins is calculated.  相似文献   

8.
马文  祝文军  陈开果  经福谦 《物理学报》2011,60(1):16107-016107
用分子动力学方法研究了纳米多晶铝在冲击加载下的冲击波阵面结构及塑性变形机理.模拟研究结果表明:在弹性先驱波之后,是晶界间滑移和变形主导了前期的塑性变形机理;然后是不全位错在界面上成核和向晶粒内传播,然后在晶粒内形成堆垛层错、孪晶和全位错的过程主导了后期的塑性变形机理.冲击波阵面扫过之后留下的结构特征是堆垛层错和孪晶留在晶粒内,大部分全位错则湮灭于对面晶界.这个由两阶段塑性变形过程导致的时序性塑性波阵面结构是过去未见报道过的. 关键词: 晶界 塑性变形 冲击波阵面 分子动力学  相似文献   

9.
The evolution of the distribution of dislocations in Ni3Ge single crystals subjected to deformation in uniaxial compression is studied. The dislocation ensemble in the material under review is found to be of a chaotic homogeneous type. Contact interactions between dislocations prevail, and a linear relation of the spacing between dislocations to the length of dislocation segments is observed for stoppers of an arbitrary type. An equation is derived for the probability density function of the fraction of mobile dislocation segments. The solution to the equation is the normal distribution law. This solution can be extended to parameters that are functions of the dislocation density or spacing between dislocations. The experimental histograms of the spacing between dislocations and of that between arbitrary stoppers with a high significance level obey the lognormal law for all degrees of reduction studied.  相似文献   

10.
The formation and structure of the nanocrystalline phase in the Al86Ni11Yb3 alloy are investigated using differential scanning calorimetry (DSC), transmission electron and high-resolution electron microscopy, and x-ray diffraction. The nanocrystalline phase is formed upon controlled crystallization of the amorphous alloy prepared by quenching of the melt on a rapidly moving substrate. It is revealed that the nanocrystalline alloy consists of aluminum nanocrystals (5–12 nm in size) randomly distributed in the amorphous matrix. The maximum fraction of the nanocrystalline phase does not exceed 25%. The nanocrystal size substantially increases at the initial stage of isothermal treatment (at 473 K) and then changes insignificantly. It is found that nanocrystals are usually free of defects. However, some nanocrystals have a more complex microstructure with twins and dislocations. The size distributions of nanocrystals are determined at several durations of isothermal treatment. It is demonstrated that the nucleation of nanocrystals predominantly occurs through the heterogeneous mechanism. The experimental distributions are compared with those obtained from a computer simulation. The activation energy of crystallization, the time-lag, and the coefficient of ytterbium diffusion in the alloy are estimated  相似文献   

11.
 利用二级轻气炮驱动弹丸的高速碰撞,向45钢材料试件中传入冲击波。利用显微硬度计、扫描电镜与透镜电镜,观察冲击波处理后45钢的显微硬度和细微观组织结构。观察分析结果表明,冲击波引起了45钢中珠光体内片状渗碳体的孪晶,并在铁素体内造成高密度的位错与位错胞。在铁素体中,除α相外,还观察到另外一个相,这个相有待进一步辨别。  相似文献   

12.
The charge fraction of Ar+ ions singly or doubly scattered by Al, Ge, and In targets is studied by means of low-energy ion scattering spectroscopy. It is shown that the behavior of the ion fraction is not described by the electron tunneling model in the case of forward scattering by an Al target. The characteristic velocities of ions singly and doubly forward and back scattered by Ge and In targets are found.  相似文献   

13.
Twinning of bismuth crystals under a concentrated load is found to be partly suppressed by a constant magnetic field. The main mechanisms of the influence of a constant homogeneous magnetic field on the twinning of bismuth single crystals subjected to long-term concentrated loading is studied. It is revealed that the length and the number of wedge twins at an indentation decrease in the magnetic field. This suggests a decrease in the mobility of partial twinning dislocations and in the intensity of the nucleation of wedge twin interlayers in a constant magnetic field. Application of the magnetic field increases the width of twins at the mouth. No anisotropy of the magnetoplastic effect is observed upon twinning.  相似文献   

14.
The conditions for the incorporation of slip dislocations either propagating into a twin or engulfed by a growing twin are studied from the geometrical point of view. The resulting dislocation formed in a twin is independent of the mechanism of the incorporation. Under suitable conditions no stacking faults are formed at the twin boundary. The decomposition of twinning dislocations forming the noncoherent twin boundary is described using complementary partial twinning dislocations. The theory is formulated for both type I and II twins. Compound twins are also briefly treated in the discussion. Using the tensor notation all the formulae are given in the form valid for all crystal structures.The author is greatly indebted to Mr. J. Koík for many helpful comments.  相似文献   

15.
为了研究靶材料对快电子能量分布的影响,采用电子谱仪测量了飞秒激光与Cu和CH靶相互作用中在靶前和靶后产生的快电子能谱。结果显示,在靶前Cu和CH靶的快电子能谱相似,反应了快电子发射对靶材料的依赖性较弱;在靶后Cu和CH靶的快电子能谱具有明显的差异,说明电子的输运过程与靶材料密切相关。冷电子环流以及自生磁场是导致Cu靶快电子能谱"软化"的原因,而对于CH靶麦克斯韦分布的快电子能谱主要由碰撞机制决定。  相似文献   

16.
Yanqiu Zhang 《哲学杂志》2013,93(30):2772-2794
Abstract

Molecular dynamics simulations were conducted to elucidate dislocation mechanisms of the void growth and coalescence in single crystal and nanotwinned nickels subjected to uniaxial tension. The simulation results reveal that twin boundary is capable of decreasing the critical stress, suppressing the emission of dislocations and reducing the overall stiffness of the crystal. A size-scale dependence of critical stress is definitely illustrated through stress–strain response, where the larger void size leads to the lower critical stress and strain. It is the successive emissions of leading partials and the subsequent trailing partials that cause the atoms on the void surfaces to escape from the void surfaces continually, and consequently the voids grow to be larger and larger with increasing strain. The voids in the nanotwinned nickel coalesce earlier than those in the single crystal nickel even though the initiation of dislocations in the former is later than that in the latter. Void fraction remains a constant during elastic deformation, while it presents a linear increase with increasing strain during plastic deformation. Evolution of void fraction during void growth and coalescence is independent on void size.  相似文献   

17.
The structure of the Hadfield steel (H13) surface layer forming under dry friction is examined. The deformation of the material under the friction surface is studied at a low slip velocity and a low pressure (much smaller than the yields stress of H13 steel). The phase composition and defect substructure on the friction surface are studied using scanning, optical, and diffraction electron microscopy methods. It is shown that a thin highly deformed nanocrystalline layer arises near the friction surface that transforms into a polycrystalline layer containing deformation twins and dislocations. The nanocrystalline structure and the presence of oxides in the surface layer and friction zone indicate a high temperature and high plastic strains responsible for the formation of the layer. It is suggested that the deformation of the material observed far from the surface is due to elastic wave generation at friction.  相似文献   

18.
The results of photon Doppler velocimetry of ejecta from shock-loaded metal samples are reported. The experiments have been performed with tin and lead samples of a given thickness and a given surface roughness. The direct numerical simulation of the process of mass ejection from the surface of shock-loaded samples is performed for conditions close to experimental by the smoothed particle hydrodynamics method. The areal density and initial velocity distribution of the volume density of ejecta are determined. Using these results, we calculate the time dependence of the profile of the volume density at the expansion of the formed dust cloud to air. Applying an approach based on the transport equation for the correlation function of the scattered field, the main parameters of the velocity distribution of ejecta, areal density of ejecta, etc. are reconstructed from spectral photon Doppler velocimetry data. The experimentally observed temporal dynamics of spectra, which is caused by the drag of dust in air, is described at an appropriately chosen size dispersion of dust particles. The masses of ejecta reconstructed from experimental data are in agreement with the smoothed particle hydrodynamics results.  相似文献   

19.
加权量子搜索算法及其相位匹配条件研究   总被引:1,自引:1,他引:0  
李盼池  李士勇 《计算物理》2008,25(5):623-630
目前的Grover算法在无序数据库中搜索多个目标时,得到不同目标的几率是相等的,不考虑各个目标重要程度的差异;并且当目标数超过数据库记录总数的四分之一时,搜索到目标的几率迅速下降,当目标数超过记录总数的一半时,算法失效.针对这两个问题,首先提出一种基于加权目标的搜索算法.根据各子目标的重要程度,为每个子目标赋予一个权系数,应用这些权系数将多个子目标表示成一个量子叠加态,这样可使得到每个子目标的几率等于其自身的权系数;其次,提出自适应相位匹配条件,该条件中两次相位旋转的方向相反,大小根据目标量子叠加态和系统初始状态的内积决定.当该内积大于等于((3-√5)/8)1/2时,至多只需两步搜索,即可以恒等于1的几率得到搜索目标.实验表明,算法及其相位匹配条件是有效的.  相似文献   

20.
A broad spectrum of physicomechanical properties of the VT1-0 nanocrystalline titanium produced by cryomechanical fragmentation of the grain structure using rolling at a temperature close to liquid-nitrogen temperature has been studied. It has been found that the mechanism of grain refinement is associated with grain fragmentation by twins. Exactly the twin nature of internal interfaces (crystallite boundaries) provides the thermal and structural stability of nanocrystalline titanium produced by cryomechanical grain fragmentation in the temperature range to ~500 K. It has been assumed that the observed decrease in the titanium density due to cryorolling is associated with a number of factors (high density of introduced dislocations, nanopore formation, and changes in titanium lattice parameters).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号