首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Lysozyme is widely used for the synthesis of nanomaterials (e.g., gold nanoparticle) to fluorescently sense metal ions. However, the effect of metal ions on the fluorescence of lysozyme is not studied yet. Herein, we have explored the interactions of lysozyme with different metal ions to develop a direct sensing platform for Fe(III). It has been observed that the fluorescence of lysozyme was slightly decreased in the presence of Cu(II), Hg(II), As(V), Co(II), Cd(II), Cr(II), Fe(II), Mn(II), Pb(II), and Zn(II), while a significant decrease in the lysozyme fluorescence was observed for Fe(III). The effect of thermal stability on the fluorescence quenching was also studied from 25 to 60 °C. In the present study, the lysozyme sensing probe was able to selectively and accurately detect 0.5–50 ppm of Fe(III) with a LOD of 0.1 ppm (1.8 µM) at 25 °C.

  相似文献   

2.
An easy-to-use fluorescence probe for detecting Sudan I was developed. The probe detects Sudan I because Sudan I and 1,8-diamino naphthalene competitively interact with copper (II). Copper (II) effectively quenches the fluorescence of 1,8-diamino naphthalene because the 1,8-diamino naphthalene interacts with copper (II) and forms a 1,8-diamino naphthalene–copper (II) complex. Adding Sudan I causes the fluorescence of the system to be recovered because the Sudan I removes copper (II) from the 1,8-diamino naphthalene–copper (II) complex, liberating the 1,8-diamino naphthalene. The displacement of 1,8-diamino naphthalene by Sudan I gives a high fluorescence recovery efficiency. Under optimal conditions, the fluorescence intensity F achieved when Sudan I was added had a good linear relationship (R2?=?0.999) with the Sudan I concentration over the range 0–4.6?µM. The Sudan I detection limit was 0.032?µM. The method offers a new way of quantitatively determining Sudan I.  相似文献   

3.

The development of a highly sensitive, selective, and efficient sensor for the determination and detection of Cr(III) ions remains a great challenge. Recently, some fluorescent chemosensors have been developed for the recognition of Cr(III) ions. But, the main drawbacks of the reported fluorescent chemosensors are the lack of selectivity and interference of anions and other trivalent cations. Herein, we designed and synthesized a novel thiazole-based fluorescent and colorimetric Schiff base chemosensor SB2 for the detection of Cr(III) ion by chemodosimetric approach. Using different analytical techniques including UV–vis, 13C-NMR, 1H-NMR, and FT-IR analysis the chemosensor SB2 was structurally characterized. The fully characterized chemosensor SB2 was used for the spectrofluorimetric and colorimetric detection of Cr(III) ions. Interestingly, chemosensor SB2 upon interaction with various metal cations including Ni2+, Na+, Cd2+, Ag+, Mn2+, K+, Zn2+, Cu2+, Hg2+, Co2+, Pb2+, Mg2+, Sn2+, Al3+ and Cr3+ displays highly selective and sensitive fluorescent (turn-on) and colorimetric (yellow to colorless) response toward Cr(III) ions. The fluorescence and UV–vis techniques confirmed the selective hydrolysis of azomethine group (-C?=?N-) of Schiff base chemosensor SB2 by Cr(III) ions. As a result, the fluorescence enhancement was observed that is corresponding to 2-hydroxy-1-nepthaldehyde (fluorophore). The chemosensor SB2 exhibits high interference performance towards Cr(III) ions over other metal cations in a wide pH range. Mover, the quite low detection limit was calculated to be 0.027 µg ml-1 (0.5 µM) (3σ/slop), lower than the maximum tolerable limits of Cr(III ions (10 µM) in drinking water permitted by the United States Environmental Protection Agency (EPA). These results show that chemosensor SB2 has great potential to detect selectively Cr(III) ions in the agricultural, environmental and biological analysis system.

Graphical Abstract
  相似文献   

4.

A Fluorescent chemosensor based on pyrene scaffold, 5-diethylamino-2-(pyren-1-yliminomethyl)-phenol (PDS) is synthesized using condensation method. It displays novel aggregation-induced emission (AIE) phenomena in its aggregated/solid state. The AIE characteristic of PDS is studied in CH3CN/H2O mixtures at different volume percentage of water and morphology of the aggregated particles are investigated by DLS and optical fluorescence microscopic study. The probe is aggregated into ordered one-dimensional (1-D) rod like microcrystals and exhibit high efficiency of solid-state emission with green colour. By taking advantage of its interesting AIE feature, the aggregated hydrosol has been utilized as ‘off–on’ type fluorescence switching chemosensor with superb selectivity and sensitivity towards Cu2+ions and the limit of detection (LOD) was calculated as low as 6.3 µM. A high Stern–Volmer quenching constant was estimated to be 2.88?×?105 M?1. The proposed chemosensor with AIE feature reveals a prospective view for the on-site visual recognition of Cu2+ ions in fluorescent paper strips and the synthesized probe is also exploited to find out the concentration of Cu2+ions in real water samples.

  相似文献   

5.
In the paper, a novel rhodamine6G based fluorescent chemosensor bearing 3-carbaldehyde chromone was designed and synthesized. According to the fluorescence behavior toward several metal ions, it showed highly selectivity and sensitivity to Zn(II) over other commonly coexistent metal ions (Cu(II), Cd(II), Hg(II), Mg(II), K(I), Pb(II), Fe(III) and Cr(III)) in aqueous environment (pH?=?7.4). Meanwhile the binding constant between Zn(II) and chemosensor achieved 6.21?×?1011 M?1 in aqueous media. Moreover, according to the Job plot, 1:1 stoichiometry between Zn(II) and sensor was deduced in aqueous media (pH?=?7.4). The good selectivity and sensitivity in aqueous media effectively enhanced the application value of the fluorescent chemosensor for Zn(II).  相似文献   

6.
An “off-on” rhodamine-based fluorescence probe for the selective signaling of Cu(II) and Fe(III) has been designed and synthesized. The optical properties of this compound have been investigated in acetonitrile-water (1:1) binary solution. Very interestingly, this compound showed sensitivity and selectivity towards Cu(II) during absorption process and towards Fe(III) during emission process. So this is a nice example of an excellent dual chemosensor for two biologically/physiologically very important transition metal ions using only the two very different techniques (absorption and emission); both cases displayed only intensity enhancement.  相似文献   

7.
A new fluorescent chemosensor (Bodipy-S) derived from Bodipy and Salophen was developed. After the characterization of all compounds, the behavior of the chemosensor Bodipy-S toward p, d and f block-metal ions was investigated by UV-vis and fluorescence spectroscopy. This chemosensor can selectively detect to Cu (II) in methanol-aqueous solution based on chelation enhanced fluorescence (CHEF) and it almost exhibit to a fluorescence quenching effect with 20-fold. The binding constant of the fluorophore was interpreted by using of the Stern-Volmer method and the complex stoichiometry was defined by using Job’s plot. Moreover, the effect of pH was performed by the fluorescence intensities of Bodipy-S in presence of Cu(II) ions. The chemosensor can be successfully used to the detection of Cu(II) in most areas.  相似文献   

8.
Panjwani  Falak  Dey  Shuvankar  Kongor  Anita  Kumar  Anshu  Panchal  Manthan  Modi  Krunal  Vora  Manoj  kumar  Ashu  Jain  Vinod Kumar 《Journal of fluorescence》2022,32(4):1425-1433

A pyrene functionalized oxacalix[4]arene architecture (DPOC) was utilized as a fluorescence probe for selective recognition of cyanide ions. The receptor DPOC shows excellent selectivity towards cyanide ion with a red shift of 108 nm in absorption band along with a significant change in colour from light yellow to pink. The fluorescence titration experiments further confirm the lower limit of detection as 1.7µM with no significant influences of competing anions. 1 H-NMR titration experiments support the deprotonation phenomena, as the -NH proton disappears upon successive addition of cyanide ions. The DFT calculation also indicates a certain increment of -NH bond length upon interaction with cyanide ions. The spectral properties as well as colour of DPOC-CN? system may be reversed upon the addition of Ag+/ Cu2+ ions up to 5 consecutive cycles. Moreover, DPOC coated “test strips” were prepared for visual detection of cyanide ions.

  相似文献   

9.
Orhan  Ersin  Ergun  Ece  Şarkaya  Koray  Ergun  Ümit 《Journal of fluorescence》2021,31(6):1833-1842

A simple and novel Schiff base chemosensor (BMHM) based on benzimidazole was synthesized. In ethanol–water (1:1, v/v) medium on varying concentrations of Zn2+ chemosensor exhibited a strong and quick turn on fluorescence response. The Zn2+ recognition was based on the Chelation–enhanced fluorescence effect. The binding constant and limit of detection for BMHM-Zn2+ complexation were estimated to be 7.99?×?104 M?1 and 0.148 µM, respectively. The extreme fluorescent enhancement caused by Zn2+ binding in chemosensor BMHM occurred at a pH range of 6–7. The practical use of chemosensor BMHM was tested by determination of Zn2+ in real water samples and comparing the results with the data obtained using high resolution inductively coupled plasma mass spectrometry.

  相似文献   

10.
A novel photochromic diarylethene containing a 2,1,3‐benzoxadiazole structure has been synthesized and its multicontrollable fluorescence properties have been systematically studied by the stimulation of light and metal ions. The compound exhibited favorable photochromism and fluorescent switching properties. Furthermore, it can serve as a fluorescent chemosensor for highly selective recognition of Cu2+ in aqueous acetonitrile. When triggered by Cu2+, it displayed a remarkable blue shift from 594 to 524 nm (70 nm) with a significant fluorescence color change from yellow to bright green. As a result, a logic circuit has also been constructed on the basis of light and chemical stimulation.  相似文献   

11.
In this study, bio-ultrasound-assisted synthesized gold nanoparticles using Gracilaria canaliculata algae have been immobilized on a polymeric support and used as a glassy probe chemosensor for detection and rapid removal of Hg2+ ions. The function of the suggested chemosensor has been explained based on gold-amalgam formation and its catalytic role on the reaction of sodium borohydride and rhodamine B (RhB) with fluorescent and colorimetric sensing function. The catalyzed reduction of RhB by the gold amalgam led to a distinguished color change from red and yellow florescence to colorless by converting the amount of Hg2+ deposited on Au-NPs. The detection limit of the colorimetric and fluorescence assays for Hg2+ was 2.21 nM and 1.10 nM respectively. By exposing the mentioned colorless solution to air for at least 2 h, unexpectedly it was observed that the color and fluorescence of RhB were restored. Have the benefit of the above phenomenon a recyclable and portable glass-based sensor has been provided by immobilizing the Au-NPs and RB on the glass slide using electrospinning. Moreover, the introduced combinatorial membrane has facilitated the detection and removal of Hg2+ ions in various Hg (II)-contaminated real water samples with efficiency of up to 99%.  相似文献   

12.
A novel colorimetric and off–on fluorescent chemosensor 2 was designed and synthesized, which showed reversible and highly selective and sensitive recognition toward Cr3+ over other examined metal ions in aqueous solution. Upon addition of Cr3+, the solution of chemosensor 2 resulted in a color change from colorless to obvious pink color, these significant changes in color could be used for naked-eye detection. Chemosensor 2 exhibited a stable response for Cr3+ in the range 0–10 μM with a detection limit of 1 ppm. Furthermore, fluorescence imaging experiments of Cr3+ ions in living MGC803 cells demonstrated its value of practical applications in biological systems.  相似文献   

13.
SnS and SnS2 powders were synthesized with the use of ultrasound. The indirect sonication was applied with ultrasound frequency 40 kHz and acoustic power 38 W/L. Products of syntheses were examined with PXRD, TEM, EDX, XPS, and UV–Vis (the Tauc method) investigations. The resulting microparticles were used for tip coating of copper cathodes. These electrodes were used in the degradation of model azo-dye Metanil Yellow by the electro-Fenton process. The efficiencies of degradation using copper, SnS-coated copper, and SnS2-coated copper cathodes are compared. Kinetics of degradation of Metanil Yellow in the electro-Fenton process with the application of three different cathodes is also investigated. It was found that the degradation follows pseudo-first-order and that SnS-coated copper cathode improves the efficiency of degradation, while SnS2-coated copper cathode decreases the efficiency of degradation.  相似文献   

14.
A novel compound 1 containing rhodamine B and macrocyclic groups has been synthesized. It was found to exhibit a reversible colorimetric response, high selectivity and sensitivity for Cu(II) ion over other commonly coexistent metal ions. The colorimetric and fluorescent response to Cu(II) can be conveniently detected even by the naked eye, which provided a facile method for visual detection of Cu(II). Approximate 71 and 53-fold enhancement in the absorbance at about 557 nm and fluorescence intensity at about 580 nm were estimated when Cu(II) ion was added to the aqueous media of compound 1. The detection limit was calculated to be 2 μM.  相似文献   

15.
A fluorescence sensor for selective detection of Cu(II) is realized by covalently immobilizing derivatives of rhodamine6G (R6G) on the surface of silicon nanowires (SiNWs). It features the release of R6G from the SiNWs in the presence of Cu(II), which causes a significant enhancement of the fluorescence over other metal ions. The present Cu(II) sensor has good selectivity and sensitivity, and exhibits a linear response in the range of 0.0-7.0 μM Cu(II). Different from conventional Cu(II) sensor with fluorescence quenching, the present sensor based on fluorescence enhancement facilitates the practical application. Especially, the release of the R6G from SiNWs could be utilized as fluorescent labeling for Cu(II) in microenvironment.  相似文献   

16.
This research concerns the analysis of the binding properties of benzodiaza‐15‐crown‐5 ether derivatives towards different metal ions (Mg(II), Cd(II), Ni(II), Cu(II), Zn(II), Pb(II), Hg(II) and Ag(I)) in acetonitrile and water by potentiometric and optical methods. Benzodiaza‐15‐crown‐5 ether demonstrates high binding affinity towards Hg2+ (lg K11 = 12.7), whereas the stability constants of complexes with other studied cations varied from 3 to 6 logarithmic units. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.

The present study aimed to develop a carbon dots-based fluorescence (FL) sensor that can detect more than one pollutant simultaneously in the same aqueous solution. The carbon dots-based FL sensor has been prepared by employing a facile hydrothermal method using citric acid and ethylenediamine as precursors. The as-synthesized CDs displayed excellent hydrophilicity, good photostability and blue fluorescence under UV light. They have been used as an efficient “turn-off” FL sensor for dual sensing of Fe3+ and Hg2+ ions in an aqueous medium with high sensitivity and selectivity through a static quenching mechanism. The lowest limit of detection (LOD) for Fe3+ and Hg2+ ions was found to be 0.406 µM and 0.934 µM, respectively over the concentration range of 0-50 µM. Therefore, the present work provides an effective strategy to monitor the concentration of Fe3+ and Hg2+ ions simultaneously in an aqueous medium using environment-friendly CDs.

Graphical Abstract
  相似文献   

18.
Shu  Yun  Dai  Tao  Ye  Qiuyu  Jin  Dangqin  Xu  Qin  Hu  Xiaoya 《Journal of fluorescence》2021,31(6):1947-1957

Using two-dimensional (2D) nickel-based metal organic framework (Ni-MOF) nanosheets as a matrix, Eu3+ and Ag+ were incorporated to synthesize Ag/Eu@Ni-MOF with double luminescence centers of Eu3+ ion (615 nm) and organic ligand (524 nm). And a ratiometric luminescence sensor is constructed based on Ag/Eu@Ni-MOF for sensitive detection of biothiols in aqueous solutions. The dual-emissive fluorescence properties can be tuned by changing the amounts of Ag+ ions doping. The results of temperature and pH effects on the fluorescence of Ag/Eu@Ni-MOF indicates that the Ag/Eu@Ni-MOF is a temperature-sensitive material and the fluorescence of Ag/Eu@Ni-MOF can keep stable over a wide pH range. Due to the binding of -SH in cysteine (Cys) and glutathione (GSH) with Ag+, the ligand luminescence was significantly inhibited by weakening the Ag?+?influence on the energy transfer process in the MOFs. Therefore, ratiometric fluorescent sensing of biomolecular thiols was realized based on the dual-emission Ag/Eu@Ni-MOF. More importantly, the fluorescence color change can be observed with naked eyes to realize visual detection. The ratiometric fluorescent sensor exhibits high performance for Cys and GSH detection with a wide linear range of 5-250 µM and a relatively low detection limit of 0.20 µM and 0.17 µM, respectively. Furthermore, the biothiols content in human serum was determined with satisfactory results. It proves the Ni-MOF nanosheets can be used as a stable matrix for construction luminescent MOFs for the first time, and validate the great potential of Ag/Eu@Ni-MOF as a ratiometric fluorescent probe for point-of-care testing (POCT) in disease diagnosis.

  相似文献   

19.
Selective quenching of luminescence of quantum dots (QDs) by Cu2+ ions vis-à-vis other physiologically relevant cations has been reexamined. In view of the contradiction regarding the mechanism, we have attempted to show why Cu2+ ions quench QD-luminescence by taking CdS and CdTe QDs with varying surface groups. A detailed study of the solvent effect and also size dependence on the observed luminescence has been carried out. For a 13% decrease in particle diameter (4.3 nm →3.7 nm), the quenching constant increased by a factor of 20. It is established that instead of surface ligands of QDs, conduction band potential of the core facilitates the photo-induced reduction of Cu (II) to Cu (I) thereby quenching the photoluminescence. Taking the advantage of biocompatibility of dendrimer and its high affinity towards Cu2+ ions, we have followed interaction of Cu2+-PAMAM and also dendrimer with the CdTe QDs. Nanomolar concentration of PAMAM dendrimer was found to quench the luminescence of CdTe QDs. In contrast, Cu2+-PAMAM enhanced the fluorescence of CdTe QDs and the effect has been attributed to the binding of Cu2+-PAMAM complex to the CdTe particle surface. The linear portion of the enhancement plot due to Cu2+-PAMAM can be used for determination of Cu2+ ions with detection limit of 70 nM.  相似文献   

20.
Ternary Cu(II) complexes [Cu(II)(L)(bpy)Cl] 1, [Cu(II)(L)(Phen)Cl] 2 [L = 2,3–dimethyl-1-phenyl-4(2 hydroxy-5-methyl benzylideneamino)-pyrazol-5-one, bpy = 2,2 bipyridine, phen =1,10 phenanthroline) were synthesized and characterized by elemental analyses, UV-Visible, FT-IR, ESR, Mass, thermogravimetric and SEM EDAX techniques. The complexes exhibit octahedral geometry. The interaction of the Cu(II) with cailf thymus DNA (CT-DNA) was explored by using absorption and fluorescence spectroscopic methods. The results revealed that the complexes have an affinity constant for DNA in the order of 104 M?1 and mode of interaction is intercalative mode. The DNA cleavage study showed that the complexes cleaved DNA without any external agent. The interaction of Cu(II) complexes with bovine serum albumin (BSA) was also studied using absorption and fluorescence techniques. The cytotoxic activity of the Cu(II) complexes was probed in HeLa (human breast adenocarcinoma cell line), B16F10 (Murine melanoma cell line) and HEPA1–6 celllines, complex 1 has good cytotoxic activity which is comparable with the doxarubicin drug, with IC50 values ranging from 3 to 12.6 μM. A further molecular docking technique was employed to understand the binding of the complexes towards the molecular target DNA. Investigation of the antioxidative properties showed that the metal complexes have significant radical scavenging activity potency against DPPH radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号