首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Merocyanine dye based fluorescent organic compound has been synthesized for the detection of glutamine. The probe showed remarkable fluorescent intensity with glutamine through ICT (Intermolecular Charge Transfer Mechanism). Hence, it is tested for the detection of glutamine using colorimetric and fluorimetric techniques in physiological and neutral pH (7.2). Under optimized experimental conditions, the probe detects glutamine selectively among other interfering biomolecules. The probe has showed a LOD (lower limit of detection) of 9.6?×?10–8 mol/L at the linear range 0–180 µM towards glutamine. The practical application of the probe is successfully tested in human biofluids.

Graphical abstract
  相似文献   

2.

The present study aimed to develop a carbon dots-based fluorescence (FL) sensor that can detect more than one pollutant simultaneously in the same aqueous solution. The carbon dots-based FL sensor has been prepared by employing a facile hydrothermal method using citric acid and ethylenediamine as precursors. The as-synthesized CDs displayed excellent hydrophilicity, good photostability and blue fluorescence under UV light. They have been used as an efficient “turn-off” FL sensor for dual sensing of Fe3+ and Hg2+ ions in an aqueous medium with high sensitivity and selectivity through a static quenching mechanism. The lowest limit of detection (LOD) for Fe3+ and Hg2+ ions was found to be 0.406 µM and 0.934 µM, respectively over the concentration range of 0-50 µM. Therefore, the present work provides an effective strategy to monitor the concentration of Fe3+ and Hg2+ ions simultaneously in an aqueous medium using environment-friendly CDs.

Graphical Abstract
  相似文献   

3.

A novel multicomponent one-pot expeditious synthesis of highly functionalized and pharmaceutically fascinated pyranopyrazoles has been developed. This reaction occurs via tandem Knoevenagel condensation reaction of methyl aryl derivatives, 3-methyl pyrazolone and malononitrile in the presence of urea hydrogen peroxide under the physical grinding method. The present methodology offers several benefits such as available green and cheap starting materials, solvent-free, mild reaction conditions, high atom economy, eco-friendly standards, excellent yields and easy isolation of the products without column chromatographic separation.

Graphic abstract
  相似文献   

4.

The bioreductive enzymes typically upregulated in hypoxic tumor cells can be targeted for developing diagnostic and drug delivery applications. In this study, a new fluorescent probe 4?(6?nitro?1,3?dioxo?1H?benzo[de]isoquinolin?2(3H)?yl)benzaldehyde (NIB) based on a nitronaphthalimide skeleton that could respond to nitroreductase (NTR) overexpressed in hypoxic tumors is designed and its application in imaging tumor hypoxia is demonstrated. The docking studies revealed favourable interactions of NIB with the binding pocket of NTR-Escherichia coli. NIB, which is synthesized through a simple and single step imidation of 4?nitro?1,8?naphthalic anhydride displayed excellent reducible capacity under hypoxic conditions as evidenced from cyclic voltammetry investigations. The fluorescence measurements confirmed the formation of identical products (NIB-red) during chemical as well as NTR?aided enzymatic reduction in the presence of NADH. The potential fluorescence imaging of hypoxia based on NTR-mediated reduction of NIB is confirmed using in-vitro cell culture experiments using human breast cancer (MCF?7) cells, which displayed a significant change in the fluorescence colour and intensity at low NIB concentration within a short incubation period in hypoxic conditions.

Graphical abstract
  相似文献   

5.

A new series of (?±)-(3-(3,5-dimethyl-1H-pyrazol-1-yl)-6-phenyl-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-7-yl)(phenyl)methanones were efficiently synthesized starting from 4-amino-5-hydrazinyl-4H-1,2,4-triazole-3-thiol 1, acetyl acetone 2, various aromatic and heterocyclic aldehydes 3 and phenacyl bromides 4. All the newly synthesized compounds were tested for their antiviral and antitumoral activity. It was shown that subtle structural variations on the phenyl moiety allowed to tune biological properties toward antiviral or antitumoral activity. Mode-of-action studies revealed that the antitumoral activity was due to inhibition of tubulin polymerization.

Graphic abstract
  相似文献   

6.

Fluorescent carbon dots (CDs) have acquired growing interest from different areas over decades. Their fascinating property of tunable fluorescence by changing the excitation wavelength has attracted researchers worldwide. Understanding the mechanisms behind fluorescence is of great importance, as they help with the synthesis and applications, significantly when narrowed down to applications with color-tunable mechanisms. But, due to a lack of practical and theoretical information, the fluorescence mechanisms of CDs remain unknown, preventing the production of CDs with desired optical qualities. This review focuses on the PL mechanisms of carbon dots. The quantum confinement effect determined the carbon core, the surface and edge states determined by various surface defects and the connected functional/chemical groups on the surface/edges, the molecular state solely determined the fluorophores in the interior or surface of the CDs, and the Crosslink Enhanced Emission Effect are the currently confirmed PL mechanisms.

Graphic Abstract
  相似文献   

7.
Liu  Yipeng  Li  Bingyan  Zhang  Huixia  Liu  Yong  Xie  Ping 《Journal of fluorescence》2022,32(2):505-519

Microcystin-LR (MC-LR) is widely distributed in natural lakes and could strongly inhibit protein phosphatase activity; it is also a potent liver tumor promoter. Over the last two decades, tremendous efforts have been devoted to enhance the detection of MC-LR in water samples. However, the traditional method is complex and costly, and achieving the fast, sensitive, and accurate determination of MC-LR in the cells and natural lakes by using fluorescence signal changes is fairly difficult. Our work explores novel fluorescent probes that are capable of concurrently analyzing and detecting MC-LR in the cells and water. In this study, we introduce, for the first time, 5-AF and 6-AF as small-molecule fluorescent probes suitable for MC-LR detection in the cells and water samples based on fluorescence signal changes. We titrated 5-AF and 6-AF with MC-LR in pure water, scanned the fluorescence of the sample, and then obtained the equation the fluorescence intensity versus MC-LR concentration curve. MC-LR in lake water samples was crudely purified, and then 5-AF was added to measure its fluorescence peak. The fluorescence intensity of 5-AF is significantly enhanced with increasing MC-LR concentration. This enhancement trend is stable and could be mathematically modeled. We also comprehensively analyzed the mechanism and recognition principle of the probe response to MC-LR in natural lake water. Moreover, we believe that 5-AF may be capable of detecting exogenous MC-LR in cells. The results of this study reveal that these unique fluorescent probes may be applied to construct near-infrared fluorescent probes that could detect MC-LR levels in vivo.

Graphical Abstract
  相似文献   

8.

Fukuyama reaction for the synthesis of multifunctional aldehydes, secondary amines and ketones has gained considerable importance in synthetic organic chemistry because of mild reaction conditions. The use of thioesters in both Fukuyama aldehydes and ketones synthesis is highly attractive for organic chemists as they are easily accessible from corresponding carboxylic acids. Fukuyama–Mitsunobu reaction utilizes 2-nitrobenzenesulfonyl (Ns) for the protection/activation/deprotection of primary amines to afford secondary amines in good yields and high enantioselectivities. This review presents recent synthetic developments and applications of Fukuyama reaction for the synthesis of aldehydes, secondary amines and ketones.

Graphic abstract
  相似文献   

9.
Das  Susmita  Mandal  Ranju Prasad  Mandal  Barun  De  Swati 《Journal of fluorescence》2021,31(5):1475-1488

We have demonstrated a unique approach to alter the aqueous pool size of an AOT/n-heptane/water reverse micellar system. A positively charged dye Rhodamine B (RhB) and negatively charged Rose Bengal (RB) were incorporated in the reverse micellar pool to investigate the effect of electrostatic interactions and stacking effects among the dye molecules on the AOT/n-heptane/water interface. Dynamic light scattering revealed increase in reverse micellar pool size in presence of positively charged dye aggregates at the oil–water interface. However, less expansion was observed in presence of negatively charged dye aggregates (RB). This confirms the role of electrostatic interaction in modulating the hydrodynamic radius. A head-to-tail type of stacking of RhB molecules at the interface favors this expansion. The differences in stacking of the two dyes inside the reverse micelles and their torsional mobility indicated the role of the reverse micellar interface and H-bonding ability of the microenvironment on dye aggregation. Conductivity measurements demonstrated a significant drop in percolation temperature of the reverse micellar system in presence of dye aggregates. This confirms the effect of dye aggregation and electrostatic interaction on such expansion. This strategy can be exploited for solubilizing greater amounts and a wider variety of drug molecules in microemulsions.

Graphical abstract
  相似文献   

10.

The c-Met tyrosine kinase plays an important role in human cancers. Preclinical studies demonstrated that c-Met is over-expressed, mutated and amplified in a variety of human tumor types and design of more potent c-Met inhibitors is a priority. In this study, 14 molecular dynamics simulations of potent type II c-Met inhibitors were run to resolve the critical interactions responsible for high affinity of ligands towards c-Met considering the essential flexibility of protein–ligand interactions. Residues Phe1223 and Tyr1159, involved in pi-pi interactions were recognized as the most effective residues in the ligand binding in terms of binding free energies. Hydrogen bond interaction with Met1160 was also found necessary for effective type II ligand binding to c-Met.

Graphic abstract
  相似文献   

11.
Xu  Tiantian  Li  Hui  Yang  Haonan  Yang  Zheng  Jia  Xiaodan  Zhao  Shunsheng  Yang  Zaiwen  Liu  Xiangrong 《Journal of fluorescence》2022,32(4):1591-1600

A novel nitrogen doped and surface functionalized fluorescent CDs (T1) was synthesized by one-step and green hydrothermal method, which exhibits a satisfactory fluorescence quantum yield and a series of admirable features such as good aqueous solubility, narrow particle size distribution, resistance to photobleaching as well as excitation-dependent behavior. Benefitting from above merits, T1 can be employed to serve as an outstanding sensing platform for sensitive and accurate detection of ClO by remarkable fluorescence “on–off” process with rapid and anti-interference. More notably, the good biocompatibility and photostability can ensure enormous bioimaging potential and successful application of T1 in monitoring of exogenous ClO in MG-63 cells. Meanwhile, T1 can also be regarded as a filter paper sensor providing a convenient and efficient analyzing technology for monitoring of free residual chlorine in practical environmental samples. All these results demonstrate that there exists promising possibility for practical applications of T1 in bioimaging systems and environmental monitoring.

Graphical abstract
  相似文献   

12.

The azomethine ylides are generally used in 1,3-dipolar cycloadditions with various dipolarophiles. In this work, a new and diverse route has been developed for the azomethine ylides, for synthesis of novel pyrrole derivatives. The azomethine ylide, produced via C–H activation of unreactive C(sp3)–H bond of 2-methylquinoline, by molecular iodine, in the presence of pyridine. Herein, we represent novel pyrrole derivatives, synthesized from the reaction of pyridinium ylide with olefins, which formed via a reaction of isatin, dialkyl acetylenedicarboxylate derivatives and pyridine as a base in moderate to excellent yields. Various features of this cyclization, discussed.

Graphic abstract
  相似文献   

13.
Jiang  Liu  Liu  Shixia  Chen  Changjian 《显形杂志》2019,22(2):401-417

Interactive machine learning (IML) is an iterative learning process that tightly couples a human with a machine learner, which is widely used by researchers and practitioners to effectively solve a wide variety of real-world application problems. Although recent years have witnessed the proliferation of IML in the field of visual analytics, most recent surveys either focus on a specific area of IML or aim to summarize a visualization field that is too generic for IML. In this paper, we systematically review the recent literature on IML and classify them into a task-oriented taxonomy built by us. We conclude the survey with a discussion of open challenges and research opportunities that we believe are inspiring for future work in IML.

Graphical abstract
  相似文献   

14.

A pyrene based probe associated with π···hole – hydrazone as one of the recognizing elements is synthesized and its turn in to a selective colorimetric and turn-on fluorescent sensor, (L3) for cyanide anion. This chemo sensor show high selectivity towards cyanide anion through photo electron transfer (PET) mechanism. The binding strength and sensitivity of the chemo sensor L3 towards cyanide are found to be 2.0 X 104, and 4.44 x 10-4 respectively. We have compared this high selectivity of the receptor towards cyanide, with our previously reported receptors L1 and L2. The detailed UV-Vis, Emission, 1H-NMR, IR spectroscopic and Molecular Electrostatic Potential (MEP) studies reveals that the homogeneous π···hole dispersion in the aromatic ring governing the selectivity of the receptor towards cyanide anion. Such a positive π···hole homogeneous dispersion is missing in the case of sensor L2, instead we have polarized π···hole dispersion towards 2nd and 4th position of di-nitrophenyl chromophoric unit in L2.

Graphical Abstract
  相似文献   

15.

Nonionic surfactant vesicles (Niosomes) were prepared using polyoxyethylene alkyl ether (Brij 58).The impact of variation of the Brij: cholesterol molar ratio on the niosomal structure was studied. Fluorescence studies performed with the membrane probe 1,6-Diphenyl-1,3,5-triene (DPH) gave important insight on the bilayer integrity of the niosomes in response to environmental perturbations. The aim of the work being assessment of the efficacy of the niosomes as “drug release vehicles”, release studies were performed with a xanthene dye Carboxyfluorescein (CF). Further, the vesicles were used as nanoreactors for the synthesis of gold nanoparticles (GNPs) as it is often useful to house nanoparticles in biological /biomimicking environments. Stable, spherical GNPs of diameter 6–10 nm were formed in these vesicles. As the vesicular bilayer mimics the cell membrane, the present work is relevant to the use of the GNPs for diagnostic and therapeutic purpose. It has also been established that fluorescence resonance energy transfer (FRET) effectively occurs between DPH and CF in the niosomes. The FRET studies provide important insight on the location of dyes within the vesicles thus indicating the prospective applications of this fluorescence technique for tracking the location of probes in biomimicking systems which maybe extrapolated to in vivo biological systems in future.

Graphical Abstract
  相似文献   

16.
Goel  Shruti  Khulbe  Mihir  Aggarwal  Anshul  Kathuria  Abha 《Molecular diversity》2022,26(5):2939-2948

In the current scenario, flow chemistry is emerging as a significant technology in the field of organic synthesis. This miniaturized protocol including microreactors facilitates excellent heat transfer, low solvent wastage, lesser reaction time, a safer environment for reagent handling and appreciable yields of desired products. Thus, this “enabling technology” has a great scope in the synthesis and preparation of a variety of heterocycles that require toxic reagents as starting materials. This review discusses the recent advances (2020–2021) in continuous flow strategy for synthesis and derivatization of variety of heterocyclic entities, of different ring size, using different approaches. This also highlights the advantages of different combined techniques like Microwave assisted heating, electrochemical flow cell, LED light source, NMR and FT-IR analysis, etc., that enables utilization of various mechanisms and real-time monitoring of reactions leading to improved results.

Graphic abstract
  相似文献   

17.

A series of amino acid-based Schiff bases have been synthesized using a facile condensation between benzil (a diketone) and amino acid in the presence of a base. The formation of Schiff base compounds has been ensured by elemental analysis, FT-IR, 1H-NMR, 13C-NMR and UV–Vis. spectra. Density Functional Theory (DFT) calculations have been explored in order to get intuition into the molecular structure and chemical reactivity of the compounds. The DFT, optimized structure of the compounds, has been used to attain the molecular docking studies with DNA structure to find the favorable mode of interaction. In silico ADME/Tox profile of the compounds has been predicted using pkCSM web tools, exhibiting suitable values of absorption, distribution, and metabolism. These obtained parameters are connected to bioavailability. In addition, toxicity, skin sensitization and cardiotoxicity (hERG) analysis have been performed for evaluating the drug-like character of the prepared Schiff bases. The findings obtained from this study may find applications in the field focusing on the production of efficient and harmless pharmacological drugs.

Graphical abstract
  相似文献   

18.

Fluorescence correlation spectroscopy (FCS) has been widely used to investigate molecular diffusion behavior in various samples. The use of the maximum entropy method (MEM) for FCS data analysis provides a unique means to determine multiple distinct diffusion coefficients without a priori assumption of their number. Comparison of the MEM-based FCS method (MEM-FCS) with another method will reveal its utility and advantage as an analytical tool to investigate diffusion dynamics. Herein, we measured diffusion of fluorescent probes doped into nanostructured thin films using MEM-FCS, and validated the results with single molecule tracking (SMT) data. The efficacy of the MEM code employed was first demonstrated by analyzing simulated FCS data for systems incorporating one and two diffusion modes with broadly distributed diffusion coefficients. The MEM analysis accurately afforded the number of distinct diffusion modes and their mean diffusion coefficients. These results contrasted with those obtained by fitting the simulated data to conventional two-component and anomalous diffusion models, which yielded inaccurate estimates of the diffusion coefficients. Subsequently, the MEM analysis was applied to FCS data acquired from hydrophilic dye molecules incorporated into microphase-separated polystyrene-block-poly(ethylene oxide) (PS-b-PEO) thin films characterized under a water-saturated N2 atmosphere. The MEM analysis revealed distinct fast and slow diffusion components attributable to molecules diffusing on the film surface and inside the film, respectively. SMT studies of the same materials yielded trajectories for mobile molecules that appear to follow the curved PEO microdomains. Diffusion coefficients obtained from the SMT data were consistent with those obtained for the slow diffusion component detected by MEM-FCS. These results highlight the utility of MEM-FCS and SMT for gaining complementary information on molecular diffusion processes in heterogeneous material systems.

Graphical Abstract
  相似文献   

19.

The deeper understanding of metastasis phenomenon and detection of drug targets could be a potential approach to minimize cancer mortality. In this study, attempts were taken to unmask novel therapeutics to prevent metastasis and cancer progression. Initially, we explored the physiochemical, structural and functional insights of three metastasis tumor antigens (MTAs) and evaluated some plant-based bioactive compounds as potent MTA inhibitors. From 50 plant metabolites screened, isoflavone, gingerol, citronellal and asiatic acid showed maximum binding affinity with all three MTA proteins. The ADME analysis detected no undesirable toxicity that could reduce the drug likeness properties of top plant metabolites. Moreover, molecular dynamics studies revealed that the complexes were stable and showed minimum fluctuation at molecular level. We further performed ligand-based virtual screening to identify similar drug molecules using a large collection of 376,342 compounds from DrugBank. The results suggested that several structural analogs (e.g., tramadol, nabumetone, DGLA and hydrocortisone) may act as agonist to block the MTA proteins and inhibit cancer progression at early stage. The study could be useful to develop effective medications against cancer metastasis in future. Due to encouraging results, we highly recommend further in vitro and in vivo trials for the experimental validation of the findings.

Graphic abstract
  相似文献   

20.

In this study, water extract of Spinacia oleracea leaves was used for the synthesis of Fe3O4/TiO2/MWCNTs magnetic nanocomposites and high performance of this catalyst was confirmed by employing it in the solvent-free multicomponent reactions of anilines, oxalyl chloride, diamines or hydroxyamines, electron-deficient acetylenic ester, α-haloketones and Et3N at room temperature for the generation of new spiropyrroloindoles in high yields. This catalyst could be utilized several times and has a significant role in the yield of product. The synthesized spiropyrroloindoles have NH and OH group in their structure and for this reason have good antioxidant activity. Also, by employing Gram-positive and Gram-negative bacteria and the disk diffusion procedure confirmed the antimicrobial effect of some spiropyrroloindole derivatives. The results showed that synthesized spiropyrroloindoles prevented the bacterial growth. This used process for preparation of new spiropyrroloindoles has some improvements such as low reaction time, product with high yields, and simple separation of catalyst and products.

Graphical abstract
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号