首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a particular discontinuous flux function that can be associated to the limit case of a phase transition, we introduce an appropriate notion of entropy weak solution to the Cauchy problem for the corresponding conservation law. Then, for a class of initial data, that includes the Riemann data, we prove, by the vanishing viscosity method and with a suitable regularisation of the flux function, the existence of an entropy weak solution. This result can be easily extended to more general flux functions.  相似文献   

2.
One of the most widely used constitutive models for compressible isotropic nonlinearly elastic solids is the generalized Blatz-Ko material for foam-rubber and its various specializations. For this model, a unified derivation of necessary and sufficient conditions for ellipticity of the governing three-dimensional displacement equations of equilibrium is provided. When the parameterf occurring in the generalized Blatz-Ko model is in the range 0f<1, it is shown that ellipticity is always lost at sufficiently large stretches, while forf=1, the equilibrium equations are globally elliptic. The implications of these results for a variety of physical problems are discussed.  相似文献   

3.
We seek for a solution of Saint-Venant's problem for inhomogeneous and anisotropic materials under the assumptions, introduced by Voigt, that the stress is either constant along the axis of the cylinder or depends linearly on the axial coordinate. We first prove the uniqueness of the solution in terms of resultants, then we exhibit an explicit formula for such a solution; we show finally how Clebsch's hypothesis, that the stress vector on axial planes is parallel to the axis, is compatible with Voigt's hypotheses provided that the symmetry group of the material comprising the cylinder contains the reflections on the cross-section.  相似文献   

4.
The finite amplitude, coupled shear-torsional motion of a circular disk supported between identical rubber spring cylinders is studied. The material of the springs is assumed to be an incompressible elastic material. The oscillatory motion oscillatory of the disk is studied for two different cases. In the first case, the material of the spring is assumed to be an incompressible elastic material whose response functions are constants. Typical examples include the Mooney-Rivlin model. The motion of the disk in this case is governed by two independent equations whose closed form solutions are noted. For the second case, the material of the spring is assumed to be an incompressible quadratic material. The motion oscillatory of the disk in this case is governed by two coupled nonlinear differential equations. The stability properties of small shearing oscillation superimposed on finite torsion and small torsional oscillation superimposed on finite shearing are studied.  相似文献   

5.
An unbounded isotropic compressible neo-Hookean solid is initially in equilibrium under uniform tensile (possibly large) pre-stress. In one case, plane strain conditions generate slit crack growth at a constant sub-critical rate; in the other, axial symmetry produces penny-shaped crack growth. The procedure of superposing infinitesimal deformations upon those that are large is carried out in terms of tractable exact full-field solutions.These solutions are examined apart from a specific fracture mechanics model, nevertheless, they show that pre-stress induces, in addition to the expected anisotropy, a critical value above which a negative Poisson effect occurs. It is also found that dilatational, rotational and Rayleigh wave speeds decrease, and that the decrease is greater for the plane strain state associated with slit crack growth than for the axially symmetric state of the penny-shaped crack.Dynamic stress intensity factors are also extracted, and found to fall below those for a linear isotropic solid at the same pre-stress and crack growth rate. Moreover, the range of growth rates for sub-critical crack propagation is also decreased.  相似文献   

6.
A class of similarity solutions is obtained for radial motions of spherical and cylindrical bodies made of a certain type of compressible hyperelastic materials. The equations satisfied by the infinitesimal generators of the symmetry group of the unified governing first order field equations for spheres and cylinders are found. It is shown that these equations admit a special class of solutions which generate a five-parameter group of transformations. The form of the strain energy function corresponding to the resulting symmetry group is evaluated. The similarity variable is determined and ordinary differential equations satisfied by similarity solutions are obtained. Numerical solutions are given for a Ko material which falls into the class of admissible materials.  相似文献   

7.
The purpose of this research is to further investigate the effects of material inhomogeneity and the combined effects of material inhomogeneity and anisotropy on the decay of Saint-Venant end effects. Saint-Venant decay rates for self-equilibrated edge loads in symmetric sandwich structures are examined in the context of anti-plane shear for linear anisotropic elasticity. The problem is governed by a second-order, linear, elliptic, partial differential equation with discontinuous coefficients. The most general anisotropy consistent with a state of anti-plane shear is considered, as well as a variety of boundary conditions. Anti-plane or longitudinal shear deformations are one of the simplest classes of deformations in solid mechanics. The resulting deformations are completely characterized by a single out-of-plane displacement which depends only on the in-plane coordinates. They can be thought of as complementary deformations to those of plane elasticity. While these deformations have received little attention compared with the plane problems of linear elasticity, they have recently been investigated for anisotropic and inhomogeneous linear elasticity. In the context of linear elasticity, Saint-Venant's principle is used to show that self-equilibrated loads generate local stress effects that quickly decay away from the loaded end of a structure. For homogeneous isotropic linear elastic materials this is well-documented. Self-equilibrated loads are a class of load distributions that are statically equivalent to zero, i.e., have zero resultant force and moment. When Saint-Venant's principle is valid, pointwise boundary conditions can be replaced by more tractable resultant conditions. It is shown in the present study that material inhomogeneity significantly affects the practical application of Saint-Venant's principle to sandwich structures.  相似文献   

8.
In the linear theory of elasticity, Saint-Venant's principle is used to justify the neglect of edge effects when determining stresses in a body. For isotropic materials, the validity of this is well established. However for anisotropic and composite materials, experimental results have shown that edge effects may persist much farther into the material than for isotropic materials and as a result cannot be neglected. This paper further examines the effects of material anisotropy on the exponential decay rate for stresses in a semi-infinite elastic strip. A linearly elastic semi-infinite strip in a state of plane stress/strain subject to a self-equilibrated end load is considered first for a specially orthotropic material and then for the general anisotropic material. The problem is governed by a fourth-order elliptic partial differential equation with constant coefficients. In the former case, just a single dimensionless material parameter appears, while in the latter, only three dimensionless parameters are required. Energy methods are used to establish lower bounds on the actual stress decay rate. Both analytic and numerical estimates are obtained in terms of the elastic constants of the material and results are shown for several contemporary engineering materials. When compared with the exact stress decay rate computed numerically from the eigenvalues of a fourth-order ordinary differential equation, the results in some cases show a high degree of accuracy. In particular, for strongly orthotropic materials, an asymptotic estimate provides extremely accurate estimates for the decay rate. Results of the type obtained here have several important practical applications. For example, they provide physical insight into the mechanical testing of anisotropic and laminated composite structures (including the off-axis tension test), are useful in assessing the influence of fasteners, joints, etc. on the behavior of composite structures and allow for tailoring a material with specific properties to ensure that local stresses attenuate at a desired rate.  相似文献   

9.
Plane deformations of a curved strip, composed of an homogeneous cylindrically anisotropic linearly elastic material, are considered. The strip is in equilibrium under the action of end loads, with the lateral sides traction-free. Two conservation properties for certain cross-sectional stress measures are established, generalizing previously known results for the case of a rectangular strip. Such conservation properties are useful in assessing the influence of material anisotropy on Saint-Venant's principle, as well as in establishing convexity properties for cross-sectional stress measures. In particular, it is anticipated that the results should be useful in determining the extent of edge effects in the testing of anisotropic and composite curved strips.  相似文献   

10.
Cavitation for incompressible anisotropic nonlinearly elastic spheres   总被引:4,自引:0,他引:4  
In this paper, the effect ofmaterial anisotropy on void nucleation and growth inincompressible nonlinearly elastic solids is examined. A bifurcation problem is considered for a solid sphere composed of an incompressible homogeneous nonlinearly elastic material which is transversely isotropic about the radial direction. Under a uniform radial tensile dead-load, a branch of radially symmetric configurations involving a traction-free internal cavity bifurcates from the undeformed configuration at sufficiently large loads. Closed form analytic solutions are obtained for a specific material model, which may be viewed as a generalization of the classic neo-Hookean model to anisotropic materials. In contrast to the situation for a neo-Hookean sphere, bifurcation here may occur locally either to the right (supercritical) or to the left (subcritical), depending on the degree of anisotropy. In the latter case, the cavity has finite radius on first appearance. Such a discontinuous change in stable equilibrium configurations is reminiscent of the snap-through buckling phenomenon of structural mechanics. Such dramatic cavitational instabilities were previously encountered by Antman and Negrón-Marrero [3] for anisotropiccompressible solids and by Horgan and Pence [17] forcomposite incompressible spheres.  相似文献   

11.
The plane displacement boundary value problem of quasi-static linear orthotropic thermoelasticity is discussed. The thermoelastic system on a bounded simply-connected domain is decoupled. The decoupled temperature equation is investigated by using an accurate estimate and the contractive mapping principle. Representation of solution of the field equation is obtained, and some solvability results are proved. The results are of both theoretical and numerical interest.  相似文献   

12.
Plane deformations of a rectangular strip, composed of an homogeneous fully anisotropic linearly elastic material, are considered. The strip is in equilibrium under the action of end loads, with the lateral sides traction-free. Two conservation properties for certain cross-sectional stress measures are established, generalizing previously known results for the isotropic case. It is noteworthy that in the first of these conservation laws only one of the off-axis elastic constants appears explicitly while in the second only the opposite off-axis constant appears explicitly. Such conservation properties are useful in assessing the influence of material anisotropy on Saint-Venant's principle, as well as in establishing convexity properties for cross-sectional stress measures. In particular, it is anticipated that the results should be useful in determining the extent of edge effects in the off-axis testing of anisotropic and composite materials.  相似文献   

13.
We discuss here solvability of systems modelling the nonelastic material behavior of metals under the assumption of monotonicity of the constitutive function and of the self-controlling property of the model under consideration. The main idea is to use the conception of coercive limits ([9, 10, 12]) and to prove a suitable convergence result. Examples of self-controlling models are presented at the end of the article. Received November 3, 1997  相似文献   

14.
We investigate the spatial behaviour of the steady state and transient elastic processes in an anisotropic elastic body subject to nonzero boundary conditions only on a plane end. For the transient elastic processes, it is shown that at distance x 3 >ct from the loaded end, (c is a positive computable constant and t is the time), all the activity in the body vanishes. For x 3 , an appropriate measure of the elastic process decays with the distance from the loaded end, the decay rate of end effects being controlled by the factor % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaKazaaiacaGGOaGccaaIXaGaaeiiaiabgkHiTiaabccadaWcaaqa% amXvP5wqonvsaeHbfv3ySLgzaGqbciab-Hha4naaBaaaleaacaqGZa% aabeaaaOqaaiaabogacaqG0baaaKazaakacaGGPaaaaa!4BB0!\[(1{\text{ }} - {\text{ }}\frac{{x_{\text{3}} }}{{{\text{ct}}}})\]. Next, it is shown that for isotropic materials, in the case of a steady state vibration, an analogue of the Phragmén-Lindelöf principle holds for an appropriate cross-sectional measure. One immediate consequence is that in the class of steady state vibrations for which a quasi-energy volume measure is bounded, this measure decays at least algebraically with the distance from the loaded end.  相似文献   

15.
Uniqueness and continuous dependence on the initial temperature are established for the solution of a multidimensional, quasistatic thermoelastic contact problem. The proof of this result does not depend on the ability to decouple the system of governing equations as required in the technique used by Shi and Shillor [European J. Appl. Math., 1990, 371–387] in the one dimensional analogue of this problem. Some extensions to other contact problems are suggested.  相似文献   

16.
We consider an anti-plane shear of an elastic cylinder with a non-convex stored energy function. So, we look for solutions of a non-convex problem of the calculus of variations with Dirichlet boundary conditions. We give sufficient conditions on the boundary data to get existence or non-existence results for this non-convex problem. We also prove some uniqueness results for the relaxed problem associated with the initial problem.  相似文献   

17.
This paper deals with the delamination effect for laminated plates undergoing large displacements (v. Kármán plates). The interaction between the laminae due to the binding material as well as the delamination effect are described by means of a nonmonotone, possibly multivalued law, while on the boundary of each lamina general unilateral boundary conditions obeying monotone laws are assumed to hold. The interface and the boundary laws are written in terms of nonconvex and convex superpotentials, respectively. The problem is written in the form of a variational-hemivariational inequality. Certain results on the existence and the approximation of the solution of this problem are obtained by means of compactness, monotonicity and average value arguments.Dedicated to Professor Dr.rer.nat. Georg Rieder, RWTH Aachen, on the occasion of his 65th birthday.  相似文献   

18.
We seek a solution for a piezoelectric cylinder acted on the end faces by applied tractions and charges, under the hypothesis that both the stress and electric displacement fields depend linearly on the axial coordinate. The analysis, restricted to monoclinic materials of crystallographic class 2, leads to an explicit solution in terms of the strain and electric fields, which depend on the stress and charge resultants and on two scalar functions determined by the solution of a plane piezoelectric problem.  相似文献   

19.
We first prove the local existence of smooth solutions to the Cauchy problem for the equations of multidimensional radiation hydrodynamics which are a hyperbolic-Boltzmann coupled system. Then, we show that a smooth solution will blow up in finite time if the initial data are large. Moreover, the property of finite propagation speed is obtained simultaneously. Supported by the NSF of Jiangxi Province, the Special Funds for Major State Basic Research Projects, the NSFC (Grant No. 10225105) and the CAEP (Grant No. 2003-R-02).  相似文献   

20.
In this paper we show that if we assume that a deformation carries bodies into bodies, then the continuity of the deformation follows as a consequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号