首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The uranyl tetrachloride dianion (UO(2)Cl(4) (2-)) is observed in the gas phase using electrospray ionization and investigated by photoelectron spectroscopy and relativistic quantum chemical calculations. Photoelectron spectra of UO(2)Cl(4) (2-) are obtained at various photon energies and congested spectral features are observed. The free UO(2)Cl(4) (2-) dianion is found to be highly stable with an adiabatic electron binding energy of 2.40 eV. Ab initio calculations are carried out and used to interpret the photoelectron spectra and elucidate the electronic structure of UO(2)Cl(4) (2-). The calculations show that the frontier molecular orbitals in UO(2)Cl(4) (2-) are dominated by the ligand Cl 3p orbitals, while the U-O bonding orbitals are much more stable. The electronic structure of UO(2)Cl(4) (2-) is compared with that of the recently reported UO(2)F(4) (2-) [P. D. Dau, J. Su, H. T. Liu, J. B. Liu, D. L. Huang, J. Li, and L. S. Wang, Chem. Sci. 3 1137 (2012)]. The electron binding energy of UO(2)Cl(4) (2-) is found to be 1.3 eV greater than that of UO(2)F(4) (2-). The differences in the electronic stability and electronic structure between UO(2)Cl(4) (2-) and UO(2)F(4) (2-) are discussed.  相似文献   

3.
We present studies of the resonance Raman and electronic luminescence spectra of the [Au(2)(dmpm)(3)](ClO(4))(2) (dmpm = bis(dimethylphosphine)methane) complex, including excitation into an intense band at 256 nm and into a weaker absorption system centered about approximately 300 nm. The resonance Raman spectra confirm the assignment of the 256 nm absorption band to a (1)(dsigma --> psigma) transition, a metal-metal-localized transition, in that nu(Au-Au) and overtones of it are strongly enhanced. A resonance Raman intensity analysis of the spectra associated with the 256 nm absorption band gives the ground-state and excited-state nu(Au-Au) stretching frequencies to be 79 and 165 cm(-1), respectively, and the excited-state Au-Au distance is calculated to decrease by about 0.1 A from the ground-state value of 3.05 A. The approximately 300 nm absorption displays a different enhancement pattern, in that resonance-enhanced Raman bands are observed at 103 and 183 cm(-1) in addition to nu(Au-Au) at 79 cm(-1) The compound exhibits intense, long-lived luminescence (in room-temperature CH(3)CN, for example, tau = 0.70 micros, phi(emission) = 0.037) with a maximum at 550-600 nm that is not very medium-sensitive. We conclude, in agreement with an earlier proposal of Mason (Inorg. Chem. 1989, 28, 4366-4369), that the lowest-energy, luminescent excited state is not (3)(dsigma --> psigma) but instead derives from (3)(d(x2-y2,xy --> psigma) excitations. We compare the Au(I)-Au(I) interaction shown in the various transitions of the [Au(2)(dmpm)(3)](ClO(4))(2) tribridged compound with previous results for solvent or counterion exciplexes of [Au(2)(dcpm)(2)](2+) salts (J. Am. Chem. Soc. 1999, 121, 4799-4803; Angew. Chem. 1999, 38, 2783-2785; Chem. Eur. J. 2001, 7, 4656-4664) and for planar, mononuclear Au(I) triphosphine complexes. It is proposed that the luminescent state in all of these cases is very similar in electronic nature.  相似文献   

4.
5.
A series of uranyl aryloxide complexes has been prepared via metathesis reactions between [UO(2)Cl(2)(THF)(2)](2) and di-ortho-substituted phenoxides. Reaction of 4 equiv of KO-2,6-(t)()Bu(2)C(6)H(3) with [UO(2)Cl(2)(THF)(2)](2) in THF produces the dark red uranyl compound, UO(2)(O-2,6-(t)()Bu(2)C(6)H(3))(2)(THF)(2).THF, 1. Single-crystal X-ray diffraction analysis of 1 reveals a monomer in which the uranium is coordinated in a pseudooctahedral fashion by two apical oxo groups, two cis-aryloxides, and two THF ligands. A similar product is prepared by reaction of KO-2,6-Ph(2)C(6)H(3) with [UO(2)Cl(2)(THF)(2)](2) in THF. Single-crystal X-ray diffraction analysis of this compound reveals it to be the trans-monomer UO(2)(O-2,6-Ph(2)C(6)H(3))(2)(THF)(2), 2. Dimeric structures result from the reactions of [UO(2)Cl(2)(THF)(2)](2) with less sterically imposing aryloxide salts, KO-2,6-Cl(2)C(6)H(3) or KO-2,6-Me(2)C(6)H(3). Single-crystal X-ray diffraction analyses of [UO(2)(O-2,6-Cl(2)C(6)H(3))(2)(THF)(2)](2), 3, and [UO(2)Cl(O-2,6-Me(2)C(6)H(3))(THF)(2)](2), 4, reveal similar structures in which each U atom is coordinated by seven ligands in a pseudopentagonal bipyramidal fashion. Coordinated to each uranium are two apical oxo groups and five equatorial ligands (3, one terminal phenoxide, two bridging phenoxides, and two nonadjacent terminal THF ligands; 4, one terminal chloride, two bridging phenoxides, and two nonadjacent terminal THF ligands). Apparently, the phenoxide ligand steric features exert a greater influence on the solid-state structures than the electronic properties of the substituents. Emission spectroscopy has been utilized to investigate the molecularity and electronic structure of these compounds. For example, luminescence spectra taken at liquid nitrogen temperature allow for a determination of the dependence of the molecular aggregation of 3 on the molecular concentration. Electronic and vibrational spectroscopic measurements have been analyzed to examine trends in emission energies and stretching frequencies. However, comparison of the data for compounds 1-4 reveals that the innate electron-donating capacity of phenoxide ligands is only subtly manifest in either the electronic or vibrational energy distributions within these molecules.  相似文献   

6.
The electronic spectra of UO(2) (2+) and [UO(2)Cl(4)](2-) are calculated with a recently proposed relativistic time-dependent density functional theory method based on the two-component zeroth-order regular approximation for the inclusion of spin-orbit coupling and a noncollinear exchange-correlation functional. All excitations out of the bonding sigma(u) (+) orbital into the nonbonding delta(u) or phi(u) orbitals for UO(2) (2+) and the corresponding excitations for [UO(2)Cl(4)](2-) are considered. Scalar relativistic vertical excitation energies are compared to values from previous calculations with the CASPT2 method. Two-component adiabatic excitation energies, U-O equilibrium distances, and symmetric stretching frequencies are compared to CASPT2 and combined configuration-interaction and spin-orbit coupling results, as well as to experimental data. The composition of the excited states in terms of the spin-orbit free states is analyzed. The results point to a significant effect of the chlorine ligands on the electronic spectrum, thereby confirming the CASPT2 results: The excitation energies are shifted and a different luminescent state is found.  相似文献   

7.
The electronic, vibrational, and excited-state properties of hexanuclear rhenium(III) chalcogenide clusters based on the [Re(6)(mu(3)-Q)(8)](2+) (Q = S, Se) core have been investigated by spectroscopic and theoretical methods. Ultraviolet or visible excitation of [Re(6)Q(8)](2+) clusters produces luminescence with ranges in maxima of 12 500-15 100 cm(-)(1), emission quantum yields of 1-24%, and emission lifetimes of 2.6-22.4 microseconds. Nonradiative decay rate constants and the luminescence maxima follow the trend predicted by the energy gap law (EGL). Examination of 24 clusters in solution and 14 in the solid phase establish that exocluster ligands engender the observed EGL behavior; clusters with oxygen- or nitrogen-based apical ligands achieve maximal quantum yields and the longest lifetimes. The excited-state decay mechanism was investigated by applying nonradiative decay models to temperature-dependent emission experiments. Solid-state Raman spectra were recorded to identify vibrational contributions to excited-state deactivation; spectral assignments were enabled by normal coordinate analysis afforded from Hartree-Fock and DFT calculations. Excited-state decay is interpreted with a model where normal modes largely centered on the [Re(6)Q(8)](2+) core induce nonradiative relaxation. Hartree-Fock and DFT calculations of the electronic structure of the hexarhenium family of compounds support such a model. These experimental and theoretical studies of [Re(6)Q(8)](2+) luminescence provide a framework for elaborating a variety of luminescence-based applications of the largest series of isoelectronic clusters yet discovered.  相似文献   

8.
The photophysical properties of Rh(2)(O(2)CCH(3))(4)(L)(2) (L = CH(3)OH, THF = tetrahydrofuran, PPh(3) = triphenylphosphine, py = pyridine) were explored upon excitation with visible light. Time-resolved absorption shows that all the complexes possess a long-lived transient (3.5-5.0 micros) assigned as an electronic excited state of the molecules, and they exhibit an optical transition at approximately 760 nm whose position is independent of axial ligand. No emission from the Rh(2)(O(2)CCH(3))(4)(L)(2) (L = CH(3)OH, THF, PPh(3), py) systems was detected, but energy transfer from Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) to the (3)pipi excited state of perylene is observed. Electron transfer from Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) to 4,4'-dimethyl viologen (MV(2+)) and chloro-p-benzoquinone (Cl-BQ) takes place with quenching rate constants (k(q)) of 8.0 x 10(6) and 1.2 x 10(6) M(-1) s(-1) in methanol, respectively. A k(q) value of 2 x 10(8) M(-1) s(-1) was measured for the quenching of the excited state of Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) by O(2) in methanol. The observations are consistent with the production of an excited state with excited-state energy, E(00), between 1.34 and 1.77 eV.  相似文献   

9.
The reaction mechanism for the exchange of fluoride in UO(2)F(5)(3-) and UO(2)F(4)(H(2)O)(2-) has been investigated experimentally using (19)F NMR spectroscopy at -5 degrees C, by studying the line broadening of the free fluoride, UO(2)F(4)(2-)(aq) and UO(2)F(5)(3-), and theoretically using quantum chemical methods to calculate the activation energy for different pathways. The new experimental data allowed us to make a more detailed study of chemical equilibria and exchange mechanisms than in previous studies. From the integrals of the different individual peaks in the new NMR spectra, we obtained the stepwise stability constant K(5) = 0.60 +/- 0.05 M(-1) for UO(2)F(5)(3-). The theoretical results indicate that the fluoride exchange pathway of lowest activation energy, 71 kJ/mol, in UO(2)F(5)(3-) is water assisted. The pure dissociative pathway has an activation energy of 75 kJ/mol, while the associative mechanism can be excluded as there is no stable UO(2)F(6)(4-) intermediate. The quantum chemical calculations have been made at the SCF/MP2 levels, using a conductor-like polarizable continuum model (CPCM) to describe the solvent. The effects of different model assumptions on the activation energy have been studied. The activation energy is not strongly dependent on the cavity size or on interactions between the complex and Na(+) counterions. However, the solvation of the complex and the leaving fluoride results in substantial changes in the activation energy. The mechanism for water exchange in UO(2)F(4)(H(2)O)(2-) has also been studied. We could eliminate the associative mechanism, the dissociative mechanism had the lowest activation energy, 39 kJ/mol, while the interchange mechanism has an activation energy that is approximately 50 kJ/mol higher.  相似文献   

10.
Resonance Raman and resonance hyper-Raman spectra of the "push-pull" conjugated molecule 1-(4'-dihexylaminostyryl)-4-(4"-nitrostyryl)benzene in acetone have been measured at excitation wavelengths from 485 to 356 nm (two-photon wavelengths for the nonlinear spectra), resonant with the first two bands in the linear absorption spectrum. The theory of resonance hyper-Raman scattering intensities is developed and simplified using assumptions appropriate for intramolecular charge-transfer transitions of large molecules in solution. The absorption spectrum and the Raman, hyper-Rayleigh, and hyper-Raman excitation profiles, all in absolute intensity units, are quantitatively simulated to probe the structures and the one- and two-photon transition strengths of the two lowest-energy allowed electronic transitions. All four spectroscopic observables are reasonably well reproduced with a single set of excited-state parameters. The two lowest-energy, one-photon allowed electronic transitions have fairly comparable one-photon and two-photon transition strengths, but the higher-energy transition is largely localized on the nitrophenyl group while the lower-energy transition is more delocalized.  相似文献   

11.
We describe the synthesis, solid state and solution properties of two families of uranyl(VI) complexes that are ligated by neutral monodentate and anionic bidentate P=O, P=NH and As=O ligands bearing pendent phenyl chromophores. The uranyl(VI) ions in these complexes possess long-lived photoluminescent LMCT (3)Π(u) excited states, which can be exploited as a sensitive probe of electronic structure, bonding and aggregation behaviour in non-aqueous media. For a family of well defined complexes of given symmetry in trans-[UO(2)Cl(2)(L(2))] (L = Ph(3)PO (1), Ph(3)AsO (2) and Ph(3)PNH (3)), the emission spectral profiles in CH(2)Cl(2) are indicative of the strength of the donor atoms bound in the equatorial plane and the uranyl bond strength; the uranyl LMCT emission maxima are shifted to lower energy as the donor strength of L increases. The luminescence lifetimes in fluid solution mirror these observations (0.87-3.46 μs) and are particularly sensitive to vibrational and bimolecular deactivation. In a family of structurally well defined complexes of the related anion, tetraphenylimidodiphosphinate (TPIP), monometallic complexes, [UO(2)(TPIP)(thf)] (4), [UO(2)(TPIP)(Cy(3)PO)] 5), a bimetallic complex [UO(2)(TPIP)(2)](2) (6) and a previously known trimetallic complex, [UO(2)(TPIP)(2)](3) (7) can be isolated by variation of the synthetic procedure. Complex 7 differs from 6 as the central uranyl ion in 7 is orthogonally connected to the two peripheral ones via uranyl → uranium dative bonds. Each of these oligomers exhibits a characteristic optical fingerprint, where the emission maxima, the spectral shape and temporal decay profiles are unique for each structural form. Notably, excited state intermetallic quenching in the trimetallic complex 7 considerably reduces the luminescence lifetime with respect to the monometallic counterpart 5 (from 2.00 μs to 1.04 μs). This study demonstrates that time resolved and multi-parametric luminescence can be of value in ascertaining solution and structural forms of discrete uranyl(VI) complexes in non-aqueous solution.  相似文献   

12.
Femto- to picosecond excited-state dynamics of the complexes [Re(L)(CO)(3)(N,N)](n) (N,N = bpy, phen, 4,7-dimethyl-phen (dmp); L = Cl, n = 0; L = imidazole, n = 1+) were investigated using fluorescence up-conversion, transient absorption in the 650-285 nm range (using broad-band UV probe pulses around 300 nm) and picosecond time-resolved IR (TRIR) spectroscopy in the region of CO stretching vibrations. Optically populated singlet charge-transfer (CT) state(s) undergo femtosecond intersystem crossing to at least two hot triplet states with a rate that is faster in Cl (~100 fs)(-1) than in imidazole (~150 fs)(-1) complexes but essentially independent of the N,N ligand. TRIR spectra indicate the presence of two long-lived triplet states that are populated simultaneously and equilibrate in a few picoseconds. The minor state accounts for less than 20% of the relaxed excited population. UV-vis transient spectra were assigned using open-shell time-dependent density functional theory calculations on the lowest triplet CT state. Visible excited-state absorption originates mostly from mixed L;N,N(?-) → Re(II) ligand-to-metal CT transitions. Excited bpy complexes show the characteristic sharp near-UV band (Cl, 373 nm; imH, 365 nm) due to two predominantly ππ*(bpy(?-)) transitions. For phen and dmp, the UV excited-state absorption occurs at ~305 nm, originating from a series of mixed ππ* and Re → CO;N,N(?-) MLCT transitions. UV-vis transient absorption features exhibit small intensity- and band-shape changes occurring with several lifetimes in the 1-5 ps range, while TRIR bands show small intensity changes (≤5 ps) and shifts (~1 and 6-10 ps) to higher wavenumbers. These spectral changes are attributable to convoluted electronic and vibrational relaxation steps and equilibration between the two lowest triplets. Still slower changes (≥15 ps), manifested mostly by the excited-state UV band, probably involve local-solvent restructuring. Implications of the observed excited-state behavior for the development and use of Re-based sensitizers and probes are discussed.  相似文献   

13.
Many squaraines have been observed to exhibit two-photon absorption at transition energies close to those of the lowest energy one-photon electronic transitions. Here, the electronic and vibronic contributions to these low-energy two-photon absorptions are elucidated by performing correlated quantum-chemical calculations on model chromophores that differ in their terminal donor groups (diarylaminothienyl, indolenylidenemethyl, dimethylaminopolyenyl, or 4-(dimethylamino)phenylpolyenyl). For squaraines with diarylaminothienyl and dimethylaminopolyenyl donors and for the longer examples of 4-(dimethylamino)phenylpolyenyl donors, the calculated energies of the lowest two-photon active states approach those of the lowest energy one-photon active (1B(u)) states. This is consistent with the existence of purely electronic channels for low-energy two-photon absorption (TPA) in these types of chromophores. On the other hand, for all squaraines containing indolinylidenemethyl donors, the calculations indicate that there are no low-lying electronic states of appropriate symmetry for TPA. Actually, we find that the lowest energy TPA transitions can be explained through coupling of the one-photon absorption (OPA) active 1B(u) state with b(u) vibrational modes. Through implementation of Herzberg-Teller theory, we are able to identify the vibrational modes responsible for the low-energy TPA peak and to reproduce, at least qualitatively, the experimental TPA spectra of several squaraines of this type.  相似文献   

14.
We report the vibrational predissociation spectrum of C(5)H(5)N-CO(2)(-), a radical anion which is closely related to the key intermediates postulated to control activation of CO(2) in photoelectrocatalysis with pyridine (Py). The anion is prepared by the reaction of Py vapor with (CO(2))(m)(-) clusters carried out in an ionized, supersonic entrainment ion source. Comparison with the results of harmonic frequency calculations establishes that this species is a covalently bound molecular anion derived from the corresponding carbamate, C(5)H(5)N-CO(2)(-) (H(+)). These results confirm the structural assignment inferred in an earlier analysis of the cluster distributions and photoelectron spectra of the mixed Py(m)(CO(2))(n)(-) complexes [J. Chem. Phys. 2000, 113 (2), 596-601]. The spectra of the (CO(2))(m)(-) (m = 5 and 7) clusters are presented for the first time in the lower energy range (1000-2400 cm(-1)), which reveal several of the fundamental modes that had only been characterized previously by their overtones and combination bands. Comparison of these new spectra with those displayed by Py(CO(2))(n)(-) suggests that a small fraction of the Py(CO(2))(n)(-) ions are trapped entrance channel reaction intermediates in which the charge remains localized on the (CO(2))(m)(-) part of the cluster.  相似文献   

15.
The synthesis and X-ray structural and spectroscopic characterization for LAuC triple bond CAuL x 4CHCl(3) and LAuC triple bond C--C triple bond CAuL x 2CH(2)Cl(2) (1 x 4CHCl(3) and 2 x 2CH(2)Cl(2), respectively; L = PCy(3), tricyclohexylphosphine) are reported. The bridging C(n)(2-) units are structurally characterized as acetylene or diacetylene units, with C triple bond C distances of 1.19(1) and 1.199(8) A for 1 x 4CHCl(3) and 2 x 2CH(2)Cl(2), respectively. An important consequence of bonding to Au(I) for the C(n)(2-) moieties is that the lowest-energy electronic excited states, which are essentially acetylenic (3)(pi pi*) in nature, acquire sufficient allowedness via Au spin-orbit coupling to appear prominently in both electronic absorption and emission spectra. The origin lines for both complexes are well-defined and are observed at 331 and 413 nm for 1 and 2, respectively. Sharp vibronic progressions corresponding to v(C triple bond C) are observed in both emission and absorption spectra. The acetylenic (3)(pi pi) excited state of 2 has a long lifetime (tau(0) = 10.8 mus) in dichloromethane at room temperature and is a powerful reductant (E degrees [Au(2)(+)/Au(2)] < or = -1.85 V vs SSCE).  相似文献   

16.
The photodissociation dynamics of CpCo(CO)(2) was studied in a molecular beam using photofragment translational energy spectroscopy with 157 nm photoionization detection of the metallic products. At 532 and 355 nm excitation, the dominant one-photon channel involved loss of a single CO ligand producing CpCoCO. The product angular distributions were isotropic, and a large fraction of excess energy appeared as product vibrational excitation. Production of CpCO + 2CO resulted from two-photon absorption processes. The two-photon dissociation of mixtures containing CpCo(CO)(2) and H(2) at the orifice of a pulsed nozzle was used to produce a novel 16-electron unsaturated species, CpCoH(2). Transition metal ligand exchange reactions, CpCoH(2) + L → CpCoL + H(2) (L = propyne, propene, or ammonia), were studied under single-collision conditions for the first time. In all cases, ligand exchange occurred via 18-electron association complexes with lifetimes comparable to their rotational periods. Although ligand exchange reactions were not detected from CpCoH(2) collisions with methane or propane (L = CH(4) or C(3)H(8)), a molecular beam containing CpCoCH(4) was produced by photolysis of mixtures containing CpCo(CO)(2) and CH(4).  相似文献   

17.
The quadruply bonded metal-metal complexes cis-Mo(2)Cl(2)(6-mhp)(2)(PR(3))(2) (R(3) = Et(3), Me(3), Me(2)Ph, MePh(2); 6-mhp = 2-hydroxy-6-methylpyridinato) photoreact when their solutions are irradiated with visible and near-UV light. The primary photoprocess leads to the ligand redistribution products Mo(2)Cl(3)(6-mhp)(PR(3))(3) and Mo(2)Cl(6-mhp)(3)(PR(3)). In THF at room temperature, these photoproducts are stable and over time they back-react completely to the starting material. Photolysis of cis-Mo(2)Cl(2)(6-mhp)(2)(PR(3))(2) in DMF results in the same products; however, Mo(2)Cl(3)(6-mhp)(PR(3))(3) rapidly decomposes, leaving Mo(2)Cl(6-mhp)(3)(PR(3)) as the only isolable photoproduct. Conversely, when the reaction is carried out in benzene, Mo(2)Cl(6-mhp)(3)(PR(3)) undergoes a slow secondary photoreaction and Mo(2)Cl(3)(6-mhp)(PR(3))(3) is the photoproduct that is isolated. At a given wavelength, the photolysis quantum yield (Phi(p)) increases along the solvent series C(6)H(6) < THF < DMF (Phi(p)(405) = 0.00042, 0.00064, and 0.00097, respectively, for cis-Mo(2)Cl(2)(6-mhp)(2)(PMe(2)Ph)(2)). For a given solvent, Phi(p) increases with decreasing excitation wavelength (Phi(p)(546) = 0.00012, Phi(p)(436) = 0.00035, Phi(p)(405) = 0.00042, Phi(p)(366) = 0.0022, and Phi(p)(313) = 0.0079 in C(6)H(6)). This wavelength dependence of the photoreaction quantum yield in conjunction with the excitation spectrum establishes that the photoreaction does not originate from the lowest energy deltadelta excited state, which possesses a long lifetime and an appreciable emission quantum yield in C(6)H(6), CH(2)Cl(2), THF, and DMF. The photochemistry is instead derived from higher energy excited states with the maximum photoreactivity observed for excitation wavelengths coinciding with absorption features previously assigned to ligand-to-metal charge transfer transitions.  相似文献   

18.
There are only a few reports on the measurement of the energy of the low-lying (3)deltadelta state of quadruply bonded bimetallic complexes, and the direct observation of the (1)deltadelta excited electronic state was only recently reported. In the quadruply bonded bimetallic complexes reported to date, luminescence arises from their (1)deltadelta excited state, and the (3)deltadelta state is nonemissive. Here we report the luminescence of Re(2)Cl(2)(p-OCH(3)form)(4) [p-OCH(3)form = (p-CH(3)OC(6)H(4))NCHN(p-CH(3)OC(6)H(4))(-)] observed upon 400-460 nm excitation with maxima at 820 nm (CH(2)Cl(2), tau = 1.4 micros) and 825 nm (CH(3)CN, tau = 1.3 micros) at 298 K. From the large Stokes shift, the vibronic progression at 77 K, the quenching by O(2), the long lifetime, and the calculated energy of the (3)deltadelta state, the luminescence of Re(2)Cl(2)(p-OCH(3)form)(4) and the corresponding transient absorption signal are assigned as arising from the (3)deltadelta ((3)A(2u)) excited state of the complex.  相似文献   

19.
The emission and excitation spectra of cis-[Cr(cyclam)(N3)2](N3) (cyclam = 1,4,8,11-tetraazacyclotetradecane) taken at 77 K are reported. The infrared and visible spectra at room temperature are also measured. The vibrational intervals due to the electronic ground state are extracted from the far-infrared and emission spectra. The ten electronic bands due to spin-allowed and spin-forbidden transitions are assigned. Using the observed transitions, a ligand field analysis has been performed to determine the bonding property of azido group in the chromium(III) complex. It is found that azide ligand has weak sigma- and pi-donor properties toward chromium(III) ion. The zero-phonon line in the excitation spectrum splits into two components by 249 cm(-1), and the large 2Eg splitting can be reproduced by the ligand field theory.  相似文献   

20.
The nitridorhenium(V) complexes ReNCl(2)(PCy3)(2) (1), ReNBr(2)(PCy3)(2) (2), ReNCl(2)(PPh3)(2) (3), and ReNBr(2)(PPh3)(2) (4) produce structured emission spectra upon excitation at low temperature. The origin, E(00), occurs at 15 775, 16 375, 15 875, and 16 300 cm(-1), respectively. The vibronic peaks are regularly spaced with an average energy separation corresponding to the Re triple bond N stretching frequency. The nitridorhenium stretching frequency ranges from 1095 to 1101 cm(-1), as determined by Raman and IR spectroscopy. The excited-state distortions are calculated by fitting the emission spectra. The excited state arises primarily from a d(xy) (ReN nonbonding) to d(yz) (ReN pi antibonding) transition. The rhenium-nitrogen bond length in the excited state is 0.08 A longer than in the ground electronic state, which is consistent with the difference in bond lengths of ReN bonds of bond order 3 and bond order 2.5 as determined from molecular structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号