首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Lie algebra \({\mathcal{D}}\) of regular differential operators on the circle has a universal central extension \({\hat{\mathcal{D}}}\). The invariant subalgebra \({\hat{\mathcal{D}}^+}\) under an involution preserving the principal gradation was introduced by Kac, Wang, and Yan. The vacuum \({\hat{\mathcal{D}}^+}\)-module with central charge \({c \in \mathbb{C}}\), and its irreducible quotient \({\mathcal{V}_c}\), possess vertex algebra structures, and \({\mathcal{V}_c}\) has a nontrivial structure if and only if \({c \in \frac{1}{2}\mathbb{Z}}\). We show that for each integer \({n > 0}\), \({\mathcal{V}_{n/2}}\) and \({\mathcal{V}_{-n}}\) are \({\mathcal{W}}\)-algebras of types \({\mathcal{W}(2, 4,\dots,2n)}\) and \({\mathcal{W}(2, 4,\dots, 2n^2 + 4n)}\), respectively. These results are formal consequences of Weyl’s first and second fundamental theorems of invariant theory for the orthogonal group \({{\rm O}(n)}\) and the symplectic group \({{\rm Sp}(2n)}\), respectively. Based on Sergeev’s theorems on the invariant theory of \({{\rm Osp}(1, 2n)}\) we conjecture that \({\mathcal{V}_{-n+1/2}}\) is of type \({\mathcal{W}(2, 4,\dots, 4n^2 + 8n + 2)}\), and we prove this for \({n = 1}\). As an application, we show that invariant subalgebras of \({\beta\gamma}\)-systems and free fermion algebras under arbitrary reductive group actions are strongly finitely generated.  相似文献   

2.
It is well known that the quantum double \({D(N\subset M)}\) of a finite depth subfactor \({N\subset M}\), or equivalently the Drinfeld center of the even part fusion category, is a unitary modular tensor category. It is big open conjecture that all (unitary) modular tensor categories arise from conformal field theory. We show that for every subfactor \({N\subset M}\) with index \({[M:N] < 4}\) the quantum double \({D(N\subset M)}\) is realized as the representation category of a completely rational conformal net. In particular, the quantum double of \({E_6}\) can be realized as a \({\mathbb{Z}_2}\)-simple current extension of \({{{\rm SU}(2)}_{10}\times {{\rm Spin}(11)}_1}\) and thus is not exotic in any sense. As a byproduct, we obtain a vertex operator algebra for every such subfactor. We obtain the result by showing that if a subfactor \({N\subset M }\) arises from \({\alpha}\)-induction of completely rational nets \({\mathcal{A}\subset \mathcal{B}}\) and there is a net \({\tilde{\mathcal{A}}}\) with the opposite braiding, then the quantum \({D(N\subset M)}\) is realized by completely rational net. We construct completely rational nets with the opposite braiding of \({{{\rm SU}(2)}_k}\) and use the well-known fact that all subfactors with index \({[M:N] < 4}\) arise by \({\alpha}\)-induction from \({{{\rm SU}(2)}_k}\).  相似文献   

3.
In recent years different aspects of categorification of the boson–fermion correspondence have been studied. In this paper we propose a categorification of the boson–fermion correspondence based on the category of tensor modules of the Lie algebra sl(∞) of finitary infinite matrices. By \({\mathbb{T}^{+}}\) we denote the category of “polynomial” tensor sl(∞)-modules. There is a natural “creation” functor \({{\mathcal{T}_{N}} : {\mathbb{T}^{+}} \to {\mathbb{T}^{+}}}\), \({M \mapsto N \otimes M, \quad M,N \in \mathbb{T}^{+}}\). The key idea of the paper is to employ the entire category \({\mathbb{T}}\) of tensor sl(∞)-modules in order to define the “annihilation” functor \({{\mathcal{D}_{N}} : {\mathbb{T}^{+}} \to {\mathbb{T}^{+}}}\) corresponding to \({{\mathcal{T}_{N}}}\). We show that the relations allowing one to express fermions via bosons arise from relations in the cohomology of complexes of linear endofunctors on \({{\mathbb{T}^{+}}}\).  相似文献   

4.
5.
In the framework of algebraic quantum field theory, we study the category \({\Delta_{{\rm BF}}^{\mathfrak{A}}}\) of stringlike localised representations of a net of observables \({\mathcal{O} \mapsto \mathfrak{A}(\mathcal{O})}\) in three dimensions. It is shown that compactly localised (DHR) representations give rise to a non-trivial centre of \({\Delta_{{\rm BF}}^{\mathfrak{A}}}\) with respect to the braiding. This implies that \({\Delta_{{\rm BF}}^{\mathfrak{A}}}\) cannot be modular when non-trivial DHR sectors exist. Modular tensor categories, however, are important for topological quantum computing. For this reason, we discuss a method to remove this obstruction to modularity.Indeed, the obstruction can be removed by passing from the observable net \({\mathfrak{A}(\mathcal{O})}\) to the Doplicher-Roberts field net \({\mathfrak{F}(\mathcal{O})}\). It is then shown that sectors of \({\mathfrak{A}}\) can be extended to sectors of the field net that commute with the action of the corresponding symmetry group. Moreover, all such sectors are extensions of sectors of \({\mathfrak{A}}\). Finally, the category \({\Delta_{{\rm BF}}^{\mathfrak{F}}}\) of sectors of \({\mathfrak{F}}\) is studied by investigating the relation with the categorical crossed product of \({\Delta_{{\rm BF}}^{\mathfrak{A}}}\) by the subcategory of DHR representations. Under appropriate conditions, this completely determines the category \({\Delta_{{\rm BF}}^{\mathfrak{F}}}\).  相似文献   

6.
We consider time delay for the Dirac equation. A new method to calculate the asymptotics of the expectation values of the operator \({\int\limits_{0} ^{\infty}{\rm e}^{iH_{0}t}\zeta(\frac{\vert x\vert }{R}) {\rm e}^{-iH_{0}t}{\rm d}t}\), as \({R \rightarrow \infty}\), is presented. Here, H0 is the free Dirac operator and \({\zeta\left(t\right)}\) is such that \({\zeta\left(t\right) = 1}\) for \({0 \leq t \leq 1}\) and \({\zeta\left(t\right) = 0}\) for \({t > 1}\). This approach allows us to obtain the time delay operator \({\delta \mathcal{T}\left(f\right)}\) for initial states f in \({\mathcal{H} _{2}^{3/2+\varepsilon}(\mathbb{R}^{3};\mathbb{C}^{4})}\), \({\varepsilon > 0}\), the Sobolev space of order \({3/2+\varepsilon}\) and weight 2. The relation between the time delay operator \({\delta\mathcal{T}\left(f\right)}\) and the Eisenbud–Wigner time delay operator is given. In addition, the relation between the averaged time delay and the spectral shift function is presented.  相似文献   

7.
We explore the breaking effects of the SU(3) flavor symmetry in the singly Cabibbo-suppressed anti-triplet charmed baryon decays of \(\mathbf{B}_c\rightarrow \mathbf{B}_n M\), with \(\mathbf{B}_c=(\Xi _c^0,\Xi _c^+,\Lambda _c^+)\) and \(\mathbf{B}_n(M)\) the baryon (pseudo-scalar) octets. We find that these breaking effects can be used to account for the experimental data on the decay branching ratios of \({\mathcal {B}}(\Lambda _c^+\rightarrow \Sigma ^{0} K^{+},\Lambda ^{0} K^{+})\) and \(R'_{K/\pi }={\mathcal {B}}(\Xi ^0_c \rightarrow \Xi ^- K^+)\)/\({\mathcal {B}}(\Xi ^0_c \rightarrow \Xi ^- \pi ^+)\). In addition, we obtain that \({\mathcal {B}}(\Xi _{c}^{0} \rightarrow \Xi ^{-} K^{+},\Sigma ^{-} \pi ^{+})=(4.6 \pm 1.7,12.8 \pm 3.1)\times 10^{-4}\), \({\mathcal {B}}(\Xi _c^0\rightarrow pK^-,\Sigma ^+\pi ^-)=(3.0 \pm 1.0, 5.2 \pm 1.6)\times 10^{-4}\) and \({\mathcal {B}}(\Xi _c^+\rightarrow \Sigma ^{0(+)} \pi ^{+(0)})=(10.3 \pm 1.7)\times 10^{-4}\), which all receive significant contributions from the breaking effects, and can be tested by the BESIII and LHCb experiments.  相似文献   

8.
Motivated by perturbation theory, we prove that the nonlinear part \({H^{*}}\) of the KdV Hamiltonian \({H^{kdv}}\), when expressed in action variables \({I = (I_{n})_{n \geqslant 1}}\), extends to a real analytic function on the positive quadrant \({\ell^{2}_{+}(\mathbb{N})}\) of \({\ell^{2}(\mathbb{N})}\) and is strictly concave near \({0}\). As a consequence, the differential of \({H^{*}}\) defines a local diffeomorphism near 0 of \({\ell_{\mathbb{C}}^{2}(\mathbb{N})}\). Furthermore, we prove that the Fourier-Lebesgue spaces \({\mathcal{F}\mathcal{L}^{s,p}}\) with \({-1/2 \leqslant s \leqslant 0}\) and \({2 \leqslant p < \infty}\), admit global KdV-Birkhoff coordinates. In particular, it means that \({\ell^{2}_+(\mathbb{N})}\) is the space of action variables of the underlying phase space \({\mathcal{F}\mathcal{L}^{-1/2,4}}\) and that the KdV equation is globally in time \({C^{0}}\)-well-posed on \({\mathcal{F}\mathcal{L}^{-1/2,4}}\).  相似文献   

9.
By including the interference effect between the QCD and the QED diagrams, we carry out a complete analysis on the exclusive productions of \(e^+e^- \rightarrow J/\psi +\chi _{cJ}\) (\(J=0,1,2\)) at the B factories with \(\sqrt{s}=10.6\) GeV at the next-to-leading-order (NLO) level in \(\alpha _s\), within the nonrelativistic QCD framework. It is found that the \({\mathcal {O}} (\alpha ^3\alpha _s)\)-order terms that represent the tree-level interference are comparable with the usual NLO QCD corrections, especially for the \(\chi _{c1}\) and \(\chi _{c2}\) cases. To explore the effect of the higher-order terms, namely \({\mathcal {O}} (\alpha ^3\alpha _s^2)\), we perform the QCD corrections to these \({\mathcal {O}} (\alpha ^3\alpha _s)\)-order terms for the first time, which are found to be able to significantly influence the \({\mathcal {O}} (\alpha ^3\alpha _s)\)-order results. In particular, in the case of \(\chi _{c1}\) and \(\chi _{c2}\), the newly calculated \({\mathcal {O}} (\alpha ^3\alpha _s^2)\)-order terms can to a large extent counteract the \({\mathcal {O}} (\alpha ^3\alpha _s)\) contributions, evidently indicating the indispensability of the corrections. In addition, we find that, as the collision energy rises, the percentage of the interference effect in the total cross section will increase rapidly, especially for the \(\chi _{c1}\) case.  相似文献   

10.
For a Hopf algebra B, we endow the Heisenberg double \({\mathcal{H}(B^*)}\) with the structure of a module algebra over the Drinfeld double \({\mathcal{D}(B)}\). Based on this property, we propose that \({\mathcal{H}(B^*)}\) is to be the counterpart of the algebra of fields on the quantum-group side of the Kazhdan–Lusztig duality between logarithmic conformal field theories and quantum groups. As an example, we work out the case where B is the Taft Hopf algebra related to the \({\overline{\mathcal{U}}_{\mathfrak{q}} s\ell(2)}\) quantum group that is Kazhdan–Lusztig-dual to (p,1) logarithmic conformal models. The corresponding pair \({(\mathcal{D}(B),\mathcal{H}(B^*))}\) is “truncated” to \({(\overline{\mathcal{U}}_{\mathfrak{q}} s\ell2,\overline{\mathcal{H}}_{\mathfrak{q}} s\ell(2))}\), where \({\overline{\mathcal{H}}_{\mathfrak{q}} s\ell(2)}\) is a \({\overline{\mathcal{U}}_{\mathfrak{q}} s\ell(2)}\) module algebra that turns out to have the form \({\overline{\mathcal{H}}_{\mathfrak{q}} s\ell(2)=\mathbb{C}_{\mathfrak{q}}[z,\partial]\otimes\mathbb{C}[\lambda]/(\lambda^{2p}-1)}\), where \({\mathbb{C}_{\mathfrak{q}}[z,\partial]}\) is the \({\overline{\mathcal{U}}_{\mathfrak{q}} s\ell(2)}\)-module algebra with the relations z p  = 0, ? p  = 0, and \({\partial z = \mathfrak{q}-\mathfrak{q}^{-1} + \mathfrak{q}^{-2} z\partial}\).  相似文献   

11.
A quantum system (with Hilbert space \({\mathcal {H}_{1}}\)) entangled with its environment (with Hilbert space \({\mathcal {H}_{2}}\)) is usually not attributed to a wave function but only to a reduced density matrix \({\rho_{1}}\). Nevertheless, there is a precise way of attributing to it a random wave function \({\psi_{1}}\), called its conditional wave function, whose probability distribution \({\mu_{1}}\) depends on the entangled wave function \({\psi \in \mathcal {H}_{1} \otimes \mathcal {H}_{2}}\) in the Hilbert space of system and environment together. It also depends on a choice of orthonormal basis of \({\mathcal {H}_{2}}\) but in relevant cases, as we show, not very much. We prove several universality (or typicality) results about \({\mu_{1}}\), e.g., that if the environment is sufficiently large then for every orthonormal basis of \({\mathcal {H}_{2}}\), most entangled states \({\psi}\) with given reduced density matrix \({\rho_{1}}\) are such that \({\mu_{1}}\) is close to one of the so-called GAP (Gaussian adjusted projected) measures, \({GAP(\rho_{1})}\). We also show that, for most entangled states \({\psi}\) from a microcanonical subspace (spanned by the eigenvectors of the Hamiltonian with energies in a narrow interval \({[E, E+ \delta E]}\)) and most orthonormal bases of \({\mathcal {H}_{2}}\), \({\mu_{1}}\) is close to \({GAP(\rm {tr}_{2} \rho_{mc})}\) with \({\rho_{mc}}\) the normalized projection to the microcanonical subspace. In particular, if the coupling between the system and the environment is weak, then \({\mu_{1}}\) is close to \({GAP(\rho_\beta)}\) with \({\rho_\beta}\) the canonical density matrix on \({\mathcal {H}_{1}}\) at inverse temperature \({\beta=\beta(E)}\). This provides the mathematical justification of our claim in Goldstein et al. (J Stat Phys 125: 1193–1221, 2006) that GAP measures describe the thermal equilibrium distribution of the wave function.  相似文献   

12.
We present natural families of coordinate algebras on noncommutative products of Euclidean spaces \({\mathbb {R}}^{N_1} \times _{\mathcal {R}} {\mathbb {R}}^{N_2}\). These coordinate algebras are quadratic ones associated with an \(\mathcal {R}\)-matrix which is involutive and satisfies the Yang–Baxter equations. As a consequence, they enjoy a list of nice properties, being regular of finite global dimension. Notably, we have eight-dimensional noncommutative euclidean spaces \({\mathbb {R}}^{4} \times _{\mathcal {R}} {\mathbb {R}}^{4}\). Among these, particularly well behaved ones have deformation parameter \(\mathbf{u} \in {\mathbb {S}}^2\). Quotients include seven spheres \({\mathbb {S}}^{7}_\mathbf{u}\) as well as noncommutative quaternionic tori \({\mathbb {T}}^{{\mathbb {H}}}_\mathbf{u} = {\mathbb {S}}^3 \times _\mathbf{u} {\mathbb {S}}^3\). There is invariance for an action of \({{\mathrm{SU}}}(2) \times {{\mathrm{SU}}}(2)\) on the torus \({\mathbb {T}}^{{\mathbb {H}}}_\mathbf{u}\) in parallel with the action of \(\mathrm{U}(1) \times \mathrm{U}(1)\) on a ‘complex’ noncommutative torus \({\mathbb {T}}^2_\theta \) which allows one to construct quaternionic toric noncommutative manifolds. Additional classes of solutions are disjoint from the classical case.  相似文献   

13.
Motivated by the relation between the Drinfeld double and central property (T) for quantum groups, given a rigid C*-tensor category \({\mathcal{C}}\) and a unitary half-braiding on an ind-object, we construct a *-representation of the fusion algebra of \({\mathcal{C}}\). This allows us to present an alternative approach to recent results of Popa and Vaes, who defined C*-algebras of monoidal categories and introduced property (T) for them. As an example we analyze categories \({\mathcal{C}}\) of Hilbert bimodules over a II1-factor. We show that in this case the Drinfeld center is monoidally equivalent to a category of Hilbert bimodules over another II1-factor obtained by the Longo–Rehren construction. As an application, we obtain an alternative proof of the result of Popa and Vaes stating that property (T) for the category defined by an extremal finite index subfactor \({N \subset M}\) is equivalent to Popa’s property (T) for the corresponding SE-inclusion of II1-factors. In the last part of the paper we study Müger’s notion of weakly monoidally Morita equivalent categories and analyze the behavior of our constructions under the equivalence of the corresponding Drinfeld centers established by Schauenburg. In particular, we prove that property (T) is invariant under weak monoidal Morita equivalence.  相似文献   

14.
The quantum double of the Haagerup subfactor, the first irreducible finite depth subfactor with index above 4, is the most obvious candidate for exotic modular data. We show that its modular data \({\mathcal{D}{\rm Hg}}\) fits into a family \({\mathcal{D}^\omega {\rm Hg}_{2n+1}}\) , where n ≥  0 and \({\omega\in \mathbb{Z}_{2n+1}}\) . We show \({\mathcal{D}^0 {\rm Hg}_{2n+1}}\) is related to the subfactors Izumi hypothetically associates to the cyclic groups \({\mathbb{Z}_{2n+1}}\) . Their modular data comes equipped with canonical and dual canonical modular invariants; we compute the corresponding alpha-inductions, etc. In addition, we show there are (respectively) 1, 2, 0 subfactors of Izumi type \({\mathbb{Z}_7, \mathbb{Z}_9}\) and \({\mathbb{Z}_3^2}\) , and find numerical evidence for 2, 1, 1, 1, 2 subfactors of Izumi type \({\mathbb{Z}_{11},\mathbb{Z}_{13},\mathbb{Z}_{15},\mathbb{Z}_{17},\mathbb{Z}_{19}}\) (previously, Izumi had shown uniqueness for \({\mathbb{Z}_3}\) and \({\mathbb{Z}_5}\)), and we identify their modular data. We explain how \({\mathcal{D}{\rm Hg}}\) (more generally \({\mathcal{D}^\omega {\rm Hg}_{2n+1}}\)) is a graft of the quantum double \({\mathcal{D} Sym(3)}\) (resp. the twisted double \({\mathcal{D}^\omega D_{2n+1}}\)) by affine so(13) (resp. so\({(4n^2+4n+5)}\)) at level 2. We discuss the vertex operator algebra (or conformal field theory) realisation of the modular data \({\mathcal{D}^\omega {\rm Hg}_{2n+1}}\) . For example we show there are exactly 2 possible character vectors (giving graded dimensions of all modules) for the Haagerup VOA at central charge c = 8. It seems unlikely that any of this twisted Haagerup-Izumi modular data can be regarded as exotic, in any reasonable sense.  相似文献   

15.
We consider the unique continuation properties of asymptotically anti-de Sitter spacetimes by studying Klein–Gordon-type equations \({\Box_g \phi + \sigma \phi = {\mathcal{G}} ( \phi, \partial \phi )}\), \({\sigma \in {\mathbb{R}}}\), on a large class of such spacetimes. Our main result establishes that if \({\phi}\) vanishes to sufficiently high order (depending on \({\sigma}\)) on a sufficiently long time interval along the conformal boundary \({{\mathcal{I}}}\), then the solution necessarily vanishes in a neighborhood of \({{\mathcal{I}}}\). In particular, in the \({\sigma}\)-range where Dirichlet and Neumann conditions are possible on \({{\mathcal{I}}}\) for the forward problem, we prove uniqueness if both these conditions are imposed. The length of the time interval can be related to the refocusing time of null geodesics on these backgrounds and is expected to be sharp. Some global applications as well as a uniqueness result for gravitational perturbations are also discussed. The proof is based on novel Carleman estimates established in this setting.  相似文献   

16.
In this short note we contribute to the generic dynamics of geodesic flows associated to metrics on compact Riemannian manifolds of dimension ≥?2. We prove that there exists a C2-residual subset \(\mathscr{R}\) of metrics on a given compact Riemannian manifold such that if \(g\in \mathscr{R}\), then its associated geodesic flow \({\varphi ^{t}_{g}}\) is expansive if and only if the closure of the set of periodic orbits of \({\varphi ^{t}_{g}}\) is a uniformly hyperbolic set. For surfaces, we obtain a stronger statement: there exists a C2-residual \(\mathscr{R}\) such that if \(g\in \mathscr{R}\), then its associated geodesic flow \({\varphi ^{t}_{g}}\) is expansive if and only if \({\varphi ^{t}_{g}}\) is an Anosov flow.  相似文献   

17.
The 2D Discrete Gaussian model gives each height function \({\eta : {\mathbb{Z}^2\to\mathbb{Z}}}\) a probability proportional to \({\exp(-\beta \mathcal{H}(\eta))}\), where \({\beta}\) is the inverse-temperature and \({\mathcal{H}(\eta) = \sum_{x\sim y}(\eta_x-\eta_y)^2}\) sums over nearest-neighbor bonds. We consider the model at large fixed \({\beta}\), where it is flat unlike its continuous analog (the Discrete Gaussian Free Field). We first establish that the maximum height in an \({L\times L}\) box with 0 boundary conditions concentrates on two integers M, M + 1 with \({M\sim \sqrt{(1/2\pi\beta)\log L\log\log L}}\). The key is a large deviation estimate for the height at the origin in \({\mathbb{Z}^{2}}\), dominated by “harmonic pinnacles”, integer approximations of a harmonic variational problem. Second, in this model conditioned on \({\eta\geq 0}\) (a floor), the average height rises, and in fact the height of almost all sites concentrates on levels H, H + 1 where \({H\sim M/\sqrt{2}}\). This in particular pins down the asymptotics, and corrects the order, in results of Bricmont et al. (J. Stat. Phys. 42(5–6):743–798, 1986), where it was argued that the maximum and the height of the surface above a floor are both of order \({\sqrt{\log L}}\). Finally, our methods extend to other classical surface models (e.g., restricted SOS), featuring connections to p-harmonic analysis and alternating sign matrices.  相似文献   

18.
We study a spatial birth-and-death process on the phase space of locally finite configurations \({\varGamma }^+ \times {\varGamma }^-\) over \({\mathbb {R}}^d\). Dynamics is described by an non-equilibrium evolution of states obtained from the Fokker-Planck equation and associated with the Markov operator \(L^+(\gamma ^-) + \frac{1}{\varepsilon }L^-\), \(\varepsilon > 0\). Here \(L^-\) describes the environment process on \({\varGamma }^-\) and \(L^+(\gamma ^-)\) describes the system process on \({\varGamma }^+\), where \(\gamma ^-\) indicates that the corresponding birth-and-death rates depend on another locally finite configuration \(\gamma ^- \in {\varGamma }^-\). We prove that, for a certain class of birth-and-death rates, the corresponding Fokker-Planck equation is well-posed, i.e. there exists a unique evolution of states \(\mu _t^{\varepsilon }\) on \({\varGamma }^+ \times {\varGamma }^-\). Moreover, we give a sufficient condition such that the environment is ergodic with exponential rate. Let \(\mu _{\mathrm {inv}}\) be the invariant measure for the environment process on \({\varGamma }^-\). In the main part of this work we establish the stochastic averaging principle, i.e. we prove that the marginal of \(\mu _t^{\varepsilon }\) onto \({\varGamma }^+\) converges weakly to an evolution of states on \({\varGamma }^+\) associated with the averaged Markov birth-and-death operator \({\overline{L}} = \int _{{\varGamma }^-}L^+(\gamma ^-)d \mu _{\mathrm {inv}}(\gamma ^-)\).  相似文献   

19.
We study the long time dynamics of the Schrödinger equation on Zoll manifolds. We establish criteria under which the solutions of the Schrödinger equation can or cannot concentrate on a given closed geodesic. As an application, we derive some results on the set of semiclassical measures for eigenfunctions of Schrödinger operators: we prove that adding a potential \({V \in C^{\infty} (\mathbb{S}^{d})}\) to the Laplacian on the sphere results in the existence of geodesics \({\gamma}\) such that the uniform measure supported on \({\gamma}\) cannot be obtained as a weak-\({\star}\) accumulation point of the densities \({(|\psi_{n}|^{2} {vol}_{\mathbb{S}^d})}\) for any sequence of eigenfunctions \({(\psi_n)}\) of \({\Delta_{\mathbb{S}^{d}} - V}\). We also show that the same phenomenon occurs for the free Laplacian on certain Zoll surfaces.  相似文献   

20.
In this paper, we consider families of operators \({\{x_r\}_{r \in \Lambda}}\) in a tracial C*-probability space \({({\mathcal{A}}, \varphi)}\) , whose joint *-distribution is invariant under free complexification and the action of the hyperoctahedral quantum groups \({\{H_n^+\}_{n \in \mathbb {N}}}\) . We prove a strong form of Haagerup’s inequality for the non-self-adjoint operator algebra \({{\mathcal{B}}}\) generated by \({\{x_r\}_{r \in \Lambda}}\) , which generalizes the strong Haagerup inequalities for *-free R-diagonal families obtained by Kemp–Speicher (J Funct Anal 251:141–173, 2007). As an application of our result, we show that \({{\mathcal{B}}}\) always has the metric approximation property (MAP). We also apply our techniques to study the reduced C*-algebra of the free unitary quantum group \({U_n^+}\) . We show that the non-self-adjoint subalgebra \({{\mathcal{B}}_n}\) generated by the matrix elements of the fundamental corepresentation of \({U_n^+}\) has the MAP. Additionally, we prove a strong Haagerup inequality for \({{\mathcal{B}}_n}\) , which improves on the estimates given by Vergnioux’s property RD (Vergnioux in J Oper Theory 57:303–324, 2007).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号