首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The interaction parameter of a given repeat unit in liquid adsorption chromatography (LAC) can be determined from the slope in a plot of the elution volumes versus the difference in elution volumes of subsequent monomers. In such a plot, the intercept represents the void volume, and from the slope the adsorption interaction parameter can be calculated. This parameter is independent of column dimensions and pore diameter and can thus be used as a measure of the interaction of a given repeat unit with the surface of a stationary phase in a given mobile phase composition. The interaction parameter can also be obtained from the slope in a plot of the logarithmic retention factors k versus the number of repeat units n or from the slope in a plot of the logarithmic difference in elution volumes of subsequent monomers versus n. The values obtained by the three different approaches are in good agreement. In a given mobile phase, the interaction parameter of a given repeat unit was found to be almost the same for various alkyl bonded columns from different producers. The retention of a given oligomer depends as well on the interaction parameter as on the pore dimensions (and thus the internal pore surface) of the stationary phase. The pore surface can be determined from the intercept in a plot of the logarithmic difference in elution volumes of (subsequent) nonfunctional monomers as a function of n. As the interaction parameter of a given repeat unit in a given mobile phase is the same for stationary phases with the same chemical nature, retention can be adjusted by selection of the pore surface. On a given stationary phase, there is a linear dependence between interaction parameter and mobile phase composition.  相似文献   

2.
The main physical characteristics of monofunctionals in adsorption chromatography - the adsorption interaction parameter of the repeat units c and the interaction parameter of specific end group q - are discussed. Both parameters are independent on column dimensions and pore diameter, and depend on mobile phase composition. In a plot of elution volumes V(n) vs. the difference DeltaV=V(n)-V(n-1) in elution volumes of consecutive non-functional or monofunctional oligomers, straight lines with the same slope are obtained for sufficiently high molar masses. The intercept of these lines yield the accessible volumes of functionalized and non-functionalized oligomers. In the range of weak interaction, the interaction parameter of the repeat unit can be determined using monofunctional chains with strongly adsorbing end group. Scope and limitations of this approach are studied using monoalkyl ethers of polypropylene glycol as model polymers.  相似文献   

3.
The main physical parameters in liquid chromatography of oligomers-the accessible volume and the adsorption interaction parameter-are discussed. It is shown, that in liquid adsorption chromatography (LAC) there is a linear relation between elution volume and the distance of two subsequent peaks of a homologous series. From the intercept of the regression lines in such a plot the accessible volume can be easily determined at any mobile phase in LAC (corresponding to conditions of weak or strong adsorption) without any information about the molar mass of the peaks. From the slope of this dependence the adsorption interaction parameter of a given repeat unit can be obtained. The accurate determination of the accessible volume and the adsorption interaction parameter in the LAC regime is presented for PEG, PPG and fatty alcohols on various reversed phase columns with different pore size in methanol-water or acetone-water mobile phases. The difference between the void volume, the dead volume or hold-up volume (from the solvent peak position) and the accessible volume (obtained by this procedure) is discussed.  相似文献   

4.
The temperature dependence of retention behaviour of polyethylene glycol (PEG) and its mono‐ and dimethyl ethers was studied on various RP columns in different mobile phases. The accessible volumes and the interaction parameters were determined from slope and intercept in a plot of the elution volumes of the oligomers of a polymer homologous series as a function of the difference of the elution volumes of consecutive oligomers. A quite different dependence of the interaction parameters was observed in the different mobile phases. While in methanol–water the interaction parameter decreases with increasing temperature, the opposite effect is observed in acetonitrile (ACN)–water. In acetone–water, the temperature dependence is almost negligible.  相似文献   

5.
In chromatography of polymers, retention is determined by the characteristic volumes of the column (pore volume and interstitial volume), the pore diameter, and the interaction parameter. While the influence of the pore diameter is predominant in size exclusion chromatography, the key parameters in liquid adsorption chromatography are the interaction parameter and the pore surface of the column. It is shown, that the retention behaviour of polymers in liquid adsorption chromatography (LAC) can be predicted very well using the accessible volume and pore surface of the column, which can be determined very easily, and the interaction parameters from a data base.  相似文献   

6.
The linear relation ln k' = Bn + ln A between the retention factor k' in liquid adsorption chromatography (LAC) and the number of repeat units n within a homologous series of oligomers is called Martin's rule. This empirical relation was supported by the retention behavior of the homologous series of different classes of oligomers but had no theoretical justification. In this paper, it is demonstrated that Martin's rule is a consequence of the general theory of liquid chromatography and the molecular sense of coefficients B and A is clarified: B is the Gibbs energy of the repeat unit of the long polymer chain adsorbed at the wall surface, and A is a combination different parameters which characterize the column and the adsorption correlation length H. The theory predicts the deviations from the linear dependence under conditions of weak adsorption between repeat units and stationary phase when H is close to radius of gyration Rg. Experimental data for retention volumes and selectivity of poly(ethylene glycol)s are given for normal and reversed-phase LAC on different columns in acetone-water and methanol-water as mobile phases. These data show excellent agreement between the theory and experiments. It is shown that Martin's rule holds under special conditions, which are theoretically defined by the relation H > Rg/1.5.  相似文献   

7.
The fluorescence quenching by oxygen of 9,10-dimethylanthracene (DMEA) in liquid ethane and propane at pressures up to 60 MPa and 25 degrees C was investigated. The apparent activation volumes for the quenching rate constant, k(q),DeltaV++(q) , were 5.0 +/- 3.4 and 7.4 +/- 1.0 cm(3)/mol, whereas those for the solvent viscosity, eta,DeltaV++(eta) , were 190 +/- 22 and 42 +/- 1 cm(3)/mol in ethane and propane at 6.0 MPa, respectively. These results were discussed together with those in n-alkanes (C(4)-C(7)) and methylcyclohexane (MCH) that were previously reported, and it was found that DeltaV++(q) increases monotonically but DeltaV++(eta) decreases rapidly with increasing the number of carbon atoms in n-alkanes. The plot of ln k(q) against ln eta showed a leveling-off with decreasing eta. These observations were analyzed satisfactorily by the pressure dependence of the solvent viscosity on k(q) coupled with that of the radial distribution function, g(sigma), at contact with a hard sphere assumption. The apparent bimolecular rate constant, k(bim,0), for the quenching in the solvent cage was evaluated by extrapolating to g(sigma)eta = 0 in the plot of g(sigma)/k(q) against g(sigma)eta, and it was found that k(bim,0) decreased with increasing the radius of the solvent molecule. From the solvent size dependence of k(bim,0), the solvent cage effect was discussed phenomenologically.  相似文献   

8.
Effects of pressure on the enantiodifferentiating methanol addition to 1,1-diphenylpropene (1) sensitized by chiral naphthalenedicarboxylates (3 and 4) were investigated over 0.1-400 MPa. The logarithm of enantiomeric excess (ee) of photoadduct, i.e. 1,1-diphenyl-2-methoxypropane (2), was a linear function of both pressure (P) and temperature (T); further, the product chirality was switched by P in some cases. From the slope of P- ln(k(R)/k(S)) plot, the differential activation volume (Delta DeltaV(double dagger)) was determined for the first time for bimolecular asymmetric photoreactions. The Delta DeltaV(double dagger) values obtained are mostly larger than those obtained for relevant unimolecular photoreactions, and are a critical function of the nature of the chiral auxiliary and solvent, indicating conformation changes of the intervening diastereomeric exciplex or transition state in different solvents. Indeed, fluorescence spectral examinations of the sensitizer and exciplex under high pressure revealed the existence of exciplexes of variable energy and structure, which may rationalize the different Delta DeltaV(double dagger) and product ee obtained. A three-dimensional diagram, correlating the ee with P and T, was constructed from the pressure dependence data at different T, from which we may propose an idea of the multidimensional control of asymmetric reaction by the combined use of the entropy-related environmental factors.  相似文献   

9.
The experimental technique of mass spectrometric tracer pulse chromatography was used to determine the void volume, i.e., the total volume of eluent in the column, and the volume of eluent moving freely through the column, i.e., mobile phase volume, for a series of eluents with a C(18)-bonded RPLC column. The interstitial volume of the column was determined by size exclusion chromatography. In order to evaluate the utility of the accessible volumes determined from the retention volumes of homologous solutes, the accessible volume of the column was determined as a function of eluent composition and temperature with polystyrene and polyethylene glycol samples using Martin's Rule. Comparison of these four measured volumes indicated that the experimentally measured accessible volumes did not correspond to either the void volumes, mobile phase volumes or interstitial volumes.  相似文献   

10.
The isocratic and gradient elution behaviour of beta-endorphin and glucagon, two polypeptides known to exist in amphipathic alpha-helical conformations in lipophilic environments, have been examined under reversed-phase high-performance liquid chromatographic (RP-HPLC) conditions with low pH, aquo-acetonitrile mobile phases. The effects of changes in the volume fraction, psi, of the organic solvent modifier and temperature, T, on the magnitudes of the S and log k(o) values of these two polypeptides, obtained from the plots of logarithmic capacity factor (log k') vs. psi using isocratic elution conditions have been determined. These data have then been compared to the corresponding S and log k(o) values, obtained from the plots of logarithmic median capacity factor (log k) versus the median volume fraction of the organic solvent modifier (psi) derived from the linear gradient elution data, using the same n-butyl silica sorbent and related aquo-acetonitrile mobile phase conditions. As apparent from these studies, substantial differences occur in the temperature-dependent trends and magnitudes of the corresponding S and S values, or the log k(o) and log k(o) values, when these parameters are derived from experimental data acquired by these two different elution methods. Moreover, when gradient elution data for beta-endorphin and glucagon are utilised, the extrapolated values of the intercept and slope of the plots of log k vs. 1/T (corresponding to an apparent change in the median enthalpy of association, deltaH(o)assoc, or an apparent change in the median entropy of association, deltaS(o)assoc) substantially deviated from the values obtained for the thermodynamic parameters, deltaH(o)assoc and deltaS(o)assoc, derived from the log k' vs. 1/T plots using the corresponding isocratic data. These findings thus have important implications for biophysical and thermodynamic investigations when gradient elution data are employed to assess the molecular basis of the interaction of polypeptides with non-polar ligates.  相似文献   

11.
A series of polyisobutene and polystyrene fractions was subjected to gel-permeation chromatography at 150°C. The two types resulted in distinctly different calibration curves in a plot of projected, extended chain length versus elution volume. The average end-to-end distances of the samples were determined by intrinsic viscosity measurements. It was found that these data plotted versus elution volume could be represented by a common curve for both polymer types. The elution volumes of the polyisobutene series were determined at three additional temperatures, 35, 70, and 110°C. It could be shown that elution volume is again determined by polymer coil size at the temperature of measurement.  相似文献   

12.
Summary l-Phenylalanine was immobilized on nylon membranes with two pore diameters (0.45 μm and 1 μm), by activation with 1,4-butanediol diglycidyl ether, and the effect of pore size on the affinity adsorption of γ-globulin studied by batch and kinetic methods. Experiment shows that adsorption on both affinity membranes obeys the Freundlich model. The accessible pore volume for adsorption of proteins on the membrane with 0.45 μm diameter pores is less than for that with 1 μm diameter pores. The adsorption capacity of affinity membranes with 1 μm diameter pores is 2.5-fold that of membranes with 0.45 μm diameter pores. Feed-rate has a larger effect on affinity adsorption on the membrane with 0.45 μm diameter pores than on that with 1 μm diameter pores. Small pores on the affinity membrane do not cause broadening of the elution peak. It is concluded that affinity interaction and separation occur mainly in the large pores, and small pore size does not favor improvement of adsorption capacity. γ-Globulin 85.1% pure can be obtained in one step from human plasma by use of the affinity membrane with 0.45 μm diameter pores.  相似文献   

13.
金银哲  卢敬昊 《色谱》2006,24(5):466-470
有效地确定了反相高效液相色谱分离儿茶酚化合物的最佳条件。在水和甲醇的二元流动相里分别加入乙酸缓冲液,利用基于ln k=ln kw +SF, k=A+B/F, ln k=L+MF+NF2 (F是流动相中有机物甲醇的体积分数)等保留因子的一次或二次方程式的塔板理论得到色谱分离结果;利用保留原理得到等度和梯度洗脱的最佳条件。得出最佳初始流动相是含0.1%乙酸的水和含0.1%乙酸的甲醇(体积比为75∶25)的混合溶液;梯度洗脱条件:初始流动相保持15 min,然后用10 min的时间将上述二元流动相的体积比线性变换成50∶50,直到完成全部分离。通过实验证实该计算结果与实验值相近。  相似文献   

14.
Data obtained from the calibration of GPC columns of different permeabilities with standard polystyrenes are reported. For single columns the logarithm molecular weight–elution volume plot is linear for approximately one and one-half decades in molecular weight. GPC separations are such that the separability of two samples of similar molecular weight improves as their mean molecular weight decreases. Because of this the analysis of high molecular weight polymers can best be accomplished on a series of columns in which each column has a high permeability limit. The elution volume for columns in series is shown to be the sum of the elution volumes of the individual columns. As higher molecular weights are eluted a pronounced tailing effect is observed.  相似文献   

15.
The effective pore diffusivities, D(e), of five model proteins (ribonuclease A, lysozyme, alpha-lactalbumin, ovalbumin, and BSA) in eight commercial phenyl hydrophobic interaction chromatography (HIC) media were determined by analyzing the plate height data from isocratic elution using the first two moments of the general linear rate model. The adsorbents represent a diverse set of HIC media that are widely used for protein purification. The estimated pore diffusivities were used to calculate the elution profiles of proteins in these adsorbents and were compared with the elution profiles obtained experimentally. High protein loading and sample protein concentration led to the underestimation of the pore diffusivity by the linear rate model. Comparisons between the calculated and the experimental profiles suggest that the pore diffusivities obtained from the linear rate model are generally accurate for proteins with low structural flexibility but not for more flexible ones, presumably because conformational change effects contribute significantly to the overall HETP. The general linear rate model was modified to account for the protein folding/unfolding kinetics, and parameter values could be estimated by fitting the experimental elution profiles to the modified model. In addition to conformational change, adsorbent type also had a significant effect on the accuracies of the pore diffusivities estimated by the linear rate model. The results also show that pore diffusion was the rate-limiting step in all absorbents for rigid proteins such as ribonuclease A and lysozyme. For structurally flexible proteins, conformational change contributed significantly to the overall reduced plate heights of the isocratic elution peaks. The physical properties of adsorbents, such as protein accessible porosity, pore size distribution, pore radius and pore connectivity, play important roles in determining the effective protein pore diffusivities.  相似文献   

16.
The potential anti-cancer activity of triazines was characterized by the inhibition of the growth of L1210/R71 cells. The retention times for fifteen triazine derivatives were measured by high-performance liquid chromatography on octyl silica and silica gel columns. The slope and intercept values of the plot of the logarithmic capacity factor versus acetonitrile concentration were calculated from the reversed-phase retention measurements. The adsorption properties of the compounds were characterized by the retention data obtained on silica gel columns using high and low concentrations of ammonium salts in the hydro-organic mobile phase. The non-polar, non-polar unsaturated and polar surface areas, the surface energies, the dipole moments and the Van der Waals radii of the molecules were calculated from their chemical structures after energy minimization on the basis of molecular mechanics. Correlation analysis of these parameters showed that the inhibitory effect is dependent on the polar and non-polar surface areas of the molecules. The reversed-phase slope showed a significant correlation with the difference between the accessible and the total non-polar surface areas of the compounds, whereas the intercept values correlated with the non-polar accessible surface area. The adsorption properties of the triazines on silica gel cannot be described by the molecular parameters investigated here.  相似文献   

17.
In adsorption studies the choice of an appropriate void volume in the calculation of the adsorption isotherm is very crucial. It is often taken to be the apparent volume as determined by the helium expansion experiments. Unfortunately this method has difficulties especially when dealing with microporous solids, in which adsorption of helium might become significant at ambient temperatures. The amount adsorbed is traditionally obtained as the excess amount and the term "excess" refers to the excess over the amount occupying the apparent volume that has the same density as the bulk gas density. This could give rise to the maximum in the plot of excess amount versus pressure under supercritical conditions, and in some cases giving negative excess. Such behavior is difficult to analyze because the excess amount is not amenable to any classical thermodynamic treatments. In this paper we will present a method to determine the absolute void volume, and in that sense this volume is independent of temperature and adsorbate. The volume that is accessible to the centers of gas molecules is also investigated, and it is called the accessible volume. This volume depends on the choice of adsorbate, and it is appropriate to use this volume to calculate the pore density because we can assess how dense the adsorbed phase is. In the quest to determine the "absolute" adsorption isotherm so that a thermodynamics analysis can be applied, it is necessary to introduce the concept of "enclosing" volume, which is essentially the volume that encloses all solid particles, including all void spaces in them. The amount adsorbed is defined by the number of molecules residing in this volume. Having these volumes, we can derive the geometrical accessible void volume inside the particle and the solid volume, from which the particle and solid densities can be calculated.  相似文献   

18.
A new mathematical treatment concerning the gradient elution in reversed-phase liquid chromatography when the volume fraction psi of an organic modifier in the water-organic mobile phase varies linearly with time is presented. The experimental ln k versus psi curve, where k is the retention factor under isocratic conditions in a binary mobile phase, is subdivided into a finite number of linear portions and the solute gradient retention time tR is calculated by means of an analytical expression arising from the fundamental equation of gradient elution. The validity of the proposed analytical expression and the methodology followed for the calculation of tR was tested using eight catechol-related solutes with mobile phases modified by methanol or acetonitrile. It was found that in all cases the accuracy of the predicted gradient retention times is very satisfactory because it is the same with the accuracy of the retention times predicted under isocratic conditions. Finally, the above method for estimating gradient retention times was used in an optimisation algorithm, which determines the best variation pattern of psi that leads to the optimum separation of a mixture of solutes at different values of the total elution time.  相似文献   

19.
Propane adsorption isotherms have been chromatographically determined on active carbon for different amounts of the injected adsorbate on column. The dependencies between the specific retention volume corrected to the standard temperature (273.15 K), Vg(273), and the molar differential work of adsorption, A, have been calculated on the basis of the propane isotherms and using the retention times of the peak maxima. The obtained equations: ln Vg(273) = f1(A) and (dW/dA)T.F(C) = f2(ln Vg(273)) have been used to explain the dependency between the chromatographic peak profile and the distribution function of pore volumes filled with propane with respect to the molar differential work of adsorption at different column temperatures (303-318 K).  相似文献   

20.
Dense polymeric membranes with extremely small pores in the form of free volume are used widely in the pervaporative separation of liquid mixtures. The membrane permeation of a component followed by its vaporization on the opposite face is governed by the solubility and downstream pressure. We measured the evaporative flux of pure methanol and 2-propanol using dense membranes with different free volumes and different affinities (wettabilities and solubilities) for the permeant. Interestingly, the evaporative flux for different membranes vanished substantially (10-75%) below the equilibrium vapor pressure in the bulk. The discrepancy was larger for a smaller pore size and for more wettable membranes (higher positive spreading coefficients). This observation, which cannot be explained by the existing (mostly solution-diffusion type) models ofpervaporation, suggests an important role for the membrane-permeant interactions in nanopores that can lower the equilibrium vapor pressure. The pore sizes, as estimated from the positron annihilation, ranged from 0.2 to 0.6 nm for the dry membranes. Solubilities of methanol in different composite membranes were estimated from the Flory-Huggins theory. The interaction parameter was obtained from the surface properties measured by the contact angle goniometry in conjunction with the acid-base theory of polar surface interactions. For the membranes examined, the increase in the "wet" pore volume due to membrane swelling correlates almost linearly with the solubility of methanol in these membranes. Indeed, the observations are found to be consistent with the lowering of the equilibrium vapor pressure on the basis of the Kelvin equation. Thus, a higher solubility or selectivity of a membrane also implies stronger permeant-membrane interactions and a greater retention of the permeant by the membrane, thus decreasing its evaporative flux. This observation has important implications for the interpretation of existing experiments and in the separation of liquid mixtures by pervaporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号