首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In this paper, a methodology for generating automated solutions to the container stowage problem is shown. The methodology was derived by applying principles of combinatorial optimization and, in particular, the Tabu Search metaheuristic. The methodology progressively refines the placement of containers, using the Tabu search concept of neighbourhoods, within the cargo-space of a container ship until each container is specifically allocated to a stowage location. Heuristic rules are built into objective functions for each stage that enable the combinatorial tree to be explored in an intelligent way, resulting in good, if not optimal, solutions for the problem in a reasonable processing time.  相似文献   

2.
We consider a stowage-planning problem of arranging containers on a container ship in the maritime transportation system. Since containers are accessible only from the top of the stack, temporary unloading and reloading of containers, called shifting, is unavoidable if a container required to be unloaded at the current port is stacked under containers to be unloaded at later ports on the route of the ship. The objective of the stowage planning problem is to minimize the time required for shifting and crane movements on a tour of a container ship while maintaining the stability of the ship. For the problem, we develop a heuristic solution method in which the problem is divided into two subproblems, one for assigning container groups into the holds and one for determining a loading pattern of containers assigned to each hold. The former subproblem is solved by a greedy heuristic based on the transportation simplex method, while the latter is solved by a tree search method. These two subproblems are solved iteratively using information obtained from solutions of each other. To see the performance of the suggested algorithm, computational tests are performed on problem instances generated based on information obtained from an ocean container liner. Results show that the suggested algorithm works better than existing algorithms.  相似文献   

3.
内河集装箱班轮运输中海关抽检可导致外贸箱箱量不断发生变化,班轮航线配载需要动态决策。基于滚动调度策略,将当前港口的配载决策按随机事件划分为多个阶段,以最小化班轮堆栈占用数量和相邻阶段间配载计划偏差为目标,构建单港口单阶段的配载决策模型,进而滚动实现班轮航线动态配载决策。基于大邻域搜索思想设计一种包含整数规划、破坏器与修复器的精确启发式算法,实现港口多阶段滚动配载。基于真实场景的算例研究表明,在优化堆栈占用数量方面,模型与算法之间差异不大,但在考虑相邻阶段间配载计划偏差时,算法的求解结果要优于模型。因此,模型与算法可用来辅助实现不确定箱量下内河集装箱班轮航线动态配载决策,且算法表现更优,可实现配载计划对不确定箱量的鲁棒吸收。  相似文献   

4.
The purpose of this study is to develop an efficient heuristic for solving the stowage problem. Containers on board a container ship are stacked one on top of the other in columns, and can only be unloaded from the top of the column. A key objective of stowage planning is to minimize the number of container movements. A genetic algorithm technique is used for solving the problem. A compact and efficient encoding of solutions is developed, which reduces significantly the search space. The efficiency of the suggested encoding is demonstrated through an extensive set of simulation runs and its flexibility is demonstrated by successful incorporation of ship stability constraints.  相似文献   

5.
Container vessel stowage planning is a hard combinatorial optimization problem with both high economic and environmental impact. We have developed an approach that often is able to generate near-optimal plans for large container vessels within a few minutes. It decomposes the problem into a master planning phase that distributes the containers to bay sections and a slot planning phase that assigns containers of each bay section to slots. In this paper, we focus on the slot planning phase of this approach and present a Constraint Programming and Integer Programming model for stowing a set of containers in a single bay section. This so-called slot planning problem is NP-hard and often involves stowing several hundred containers. Using state-of-the-art constraint solvers and modeling techniques, however, we were able to solve 90% of 236 real instances from our industrial collaborator to optimality within 1 second. Thus, somewhat to our surprise, it is possible to solve most of these problems optimally within the time required for practical application.  相似文献   

6.
This paper presents a hybrid genetic algorithm (GA) for the container loading problem with boxes of different sizes and a single container for loading. Generated stowage plans include several vertical layers each containing several boxes. Within the procedure, stowage plans are represented by complex data structures closely related to the problem. To generate offspring, specific genetic operators are used that are based on an integrated greedy heuristic. The process takes several practical constraints into account. Extensive test calculations including procedures from other authors vouch for the good performance of the GA, above all for problems with strongly heterogeneous boxes.  相似文献   

7.
This paper addresses the problem of determining stowage plansfor containers in a ship, referred to as the Master Bay PlanProblem (MBPP). MBPP is NP-complete. We present a heuristic method for solvingMBPP based on its relation with the three-dimensional bin packingproblem (3D-BPP), where items are containers and bins are differentportions of the ship. Our aim is to find stowage plans, takinginto account structural and operational constraints relatedto both the containers and the ship, that minimize the timerequired for loading all containers on board. A validation of the proposed approach with some test casesis given. The results of real instances of the problem involvingmore than 1400 containers show the effectiveness of the proposedapproach for large scale applications.  相似文献   

8.
In the shipping and transportation industry, there are several types of standard containers with different dimensions and different associated costs. In this paper, we examine the multiple container loading cost minimization problem (MCLCMP), where the objective is to load products of various types into containers of various sizes so as to minimize the total cost. We transform the MCLCMP into an extended set cover problem that is formulated using linear integer programming and solve it with a heuristic to generate columns. Experiments on standard bin-packing instances show our approach is superior to prior approaches. Additionally, since the optimal solutions for existing test data is unknown, we propose a technique to generate test data with known optimal solutions for MCLCMP.  相似文献   

9.
A decomposition heuristics for the container ship stowage problem   总被引:3,自引:0,他引:3  
In this paper we face the problem of stowing a containership, referred to as the Master Bay Plan Problem (MBPP); this problem is difficult to solve due to its combinatorial nature and the constraints related to both the ship and the containers. We present a decomposition approach that allows us to assign a priori the bays of a containership to the set of containers to be loaded according to their final destination, such that different portions of the ship are independently considered for the stowage. Then, we find the optimal solution of each subset of bays by using a 0/1 Linear Programming model. Finally, we check the global ship stability of the overall stowage plan and look for its feasibility by using an exchange algorithm which is based on local search techniques. The validation of the proposed approach is performed with some real life test cases. This work has been developed within the research area: “The harbour as a logistic node” of the Italian Centre of Excellence on Integrated Logistics (CIELI) of the University of Genoa, Italy  相似文献   

10.
Multimodal container terminals (MMCTs) are very complex and consequently require synchronization and balancing of container transfers at each node. The problem being investigated is the minimization of ship delays at the port by considering handling and travelling time of containers from the time the ship arrives at port until all the containers from that ship leave the port. When dealing with export containers, the problem would be that of the handling and travelling time of the containers from when they first arrive at the port until the ship carrying the containers departs from the port. Owing to the dynamic nature of the environment, a large number of timely decisions have been reviewed in accordance with the changing conditions of the MMCTs. The model has been run and tested with a small-size problem using CPLEX. A more realistic model is extremely difficult to solve and is in fact proven to be computationally intractable (NP-hard). Metaheuristics have been developed to deal with the intractability so that near-optimal solutions could be obtained in reasonable time.  相似文献   

11.
The main objective of this paper consists in modelling, optimizing, and controlling container transfer operations inside intermodal terminals. More specifically, maritime container terminals are here considered, involving three kinds of transportation modes, i.e., maritime, rail, and road transport. Generally speaking, an intermodal port terminal can be seen as a system of container flows with two interfaces, towards the hinterland and towards the sea, respectively. Moreover, inside a terminal, unloading operations of inbound containers, container storage, and loading operations of outbound containers are carried out. A simple model for maritime container terminals is proposed in this paper. In the model, a system of queues represents the standing of containers and their movements inside the terminal. The dynamic evolutions of these queues are described by discrete-time equations, where the state variables represent the queue lengths and the control variables take into account the utilization of terminal resources such as load/unload handling rates. On the basis of the proposed model, an optimization problem is defined that consists in minimizing the transfer delays of containers in the terminal. The problem is stated as an optimal control problem whose solution is sought by adopting a receding-horizon strategy.   相似文献   

12.
The Atlas Copco distribution center in Allen, TX, supplies spare parts and consumables to mining and construction companies across the world. For some customers, packages are shipped in sea containers. Planning how to load the containers is difficult due to several factors: heterogeneity of the packages with respect to size, weight, stackability, positioning and orientation; the set of packages differs vastly between shipments; it is crucial to avoid cargo damage. Load plan quality is ultimately judged by shipping operators.This container loading problem is thus rich with respect to practical considerations. These are posed by the operators and include cargo and container stability as well as stacking and positioning constraints. To avoid cargo damage, the stacking restrictions are modeled in detail. For solving the problem, we developed a two-level metaheuristic approach and implemented it in a decision support system. The upper level is a genetic algorithm which tunes the objective function for a lower level greedy-type constructive placement heuristic, to optimize the quality of the load plan obtained.The decision support system shows load plans on the forklift laptops and has been used for over two years. Management has recognized benefits including reduction of labour usage, lead time, and cargo damage risk.  相似文献   

13.
The quay crane scheduling problem (QCSP) is at the basis of a major logistic process in maritime container terminals: the process of discharging/loading containers from/on berthed vessels. Several groups of containers, laying in one or more stowage portions of a containership, have to be assigned to multiple cranes and discharge/loading operations have to be optimally sequenced, under some complicating constraints imposed by the practical working rules of quay cranes. The QCSP has been the object of a great deal of research work since the last decade and it is focused in this paper, with the aim of consolidating a promising solution approach based upon the combination of specialized branch & bound (B&B) and heuristic algorithms. A cost-effective solution technique that incorporates the local branching method within a refined B&B algorithm is proposed and its effectiveness is assessed by numerical comparisons against the latest algorithm available in literature.  相似文献   

14.
This paper addresses the problem of determining stowage plans for containers in a ship, that is the so-called master bay plan problem (MBPP).  相似文献   

15.
This paper investigates a drayage problem, where a fleet of trucks must ship container loads from a port to importers and from exporters to the same port, without separating trucks and containers during customer service. We present three formulations for this problem that are valid when each truck carries one container. For the third formulation, we also assume that the arc costs are equal for all trucks, and then we prove that its continuous relaxation admits integer optimal solutions by checking that its constraint matrix is totally unimodular. Under the same hypothesis on costs, even the continuous relaxations of the first two models are proved to admit an integer optimal solution. Finally, the third model is transformed into a circulation problem, that can be solved by efficient network algorithms.  相似文献   

16.
Yard cranes are the most popular container handling equipment for loading containers onto or unloading containers from trucks in container yards of land scarce port container terminals. However, such equipment is bulky, and very often generates bottlenecks in the container flow in a terminal because of their slow operations. Hence, it is essential to develop good yard crane work schedules to ensure a high terminal throughput. This paper studies the problem of scheduling a yard crane to perform a given set of loading/unloading jobs with different ready times. The objective is to minimize the sum of job waiting times. A branch and bound algorithm is proposed to solve the scheduling problem optimally. Efficient and effective algorithms are proposed to find lower bounds and upper bounds. The performance of the proposed branch and bound algorithm is evaluated by a set of test problems generated based on real life data. The results show that the algorithm can find the optimal sequence for most problems of realistic sizes.  相似文献   

17.
The container was introduced as a universal carrier for various goods in the 1960s and soon became a standard worldwide transportation. The competitiveness of a container seaport is marked by different success factors, particularly the time in port for ships. Operational problems of container terminals is divided into several problems, such as assignment of vessels, loading/unloading and storage of the containers, quay cranes scheduling cite, planning yard cranes cite and assignment of storage containers cite. In this work, the study will focus on piloting yard trucks. Two different types of vehicles can be used, namely automated guided vehicles (AGVs) and lifting vehicles (LVs). An AGV receives a container from a quay crane and transports containers over fixed path. LVs are capable of lifting a container from the ground by itself. The model that we consider is formulated as a mixed integer programming problem, and the difficulty arises when the number of binary variables increases. There are a lot of algorithms designed for mixed integer programming problem such as Branch and Bound method, cutting plane algorithm, . . . By using an exact penalty technique we treat this problem as a DC program in the context of continuous optimization. Further, we combine the DCA with the classical Branch and Bound method for finding global solutions.  相似文献   

18.
We present a novel integer programming model for analyzing inter-terminal transportation (ITT) in new and expanding sea ports. ITT is the movement of containers between terminals (sea, rail or otherwise) within a port. ITT represents a significant source of delay for containers being transshipped, which costs ports money and affects a port’s reputation. Our model assists ports in analyzing the impact of new infrastructure, the placement of terminals, and ITT vehicle investments. We provide analysis of ITT at two ports, the port of Hamburg, Germany and the Maasvlakte 1 & 2 area of the port of Rotterdam, The Netherlands, in which we solve a vehicle flow combined with a multi-commodity container flow on a congestion based time–space graph to optimality. We introduce a two-step solution procedure that computes a relaxation of the overall ITT problem in order to find solutions faster. Our graph contains special structures to model the long term loading and unloading of vehicles, and our model is general enough to model a number of important real-world aspects of ITT, such as traffic congestion, penalized late container delivery, multiple ITT transportation modes, and port infrastructure modifications. We show that our model can scale to real-world sizes and provide ports with important information for their long term decision making.  相似文献   

19.
To mitigate the threat of nuclear terrorism within the US using nuclear material that has been smuggled into the country, the US Bureau of Customs and Border Protection has expanded its cargo container detection capabilities at ports of entry into the US This paper formulates a risk-based screening framework for determining how to define a primary screening alarm for screening cargo containers given a set of dependent primary screening devices. To do so, this paper proposes two linear programming models for screening cargo containers for nuclear material at port security stations using knapsack problem models. All cargo containers undergo primary screening, where they are screened by a given number of security devices. The objective is to identifying the primary security outcomes that warrant a system alarm for each container risk group such that the system detection probability is maximized, subject to a screening budget. The base model is compared to a second model that explicitly requires a threshold-based policy. The structural properties of the two models are compared, which indicates that all risk groups except at most one have deterministic screening policies. A computational example suggests that the detection probability is not significantly altered by enforcing a threshold policy.  相似文献   

20.
This study formulates a two-objective model to determine the optimal liner routing, ship size, and sailing frequency for container carriers by minimizing shipping costs and inventory costs. First, shipping and inventory cost functions are formulated using an analytical method. Then, based on a trade-off between shipping costs and inventory costs, Pareto optimal solutions of the two-objective model are determined. Not only can the optimal ship size and sailing frequency be determined for any route, but also the routing decision on whether to route containers through a hub or directly to their destination can be made in objective value space. Finally, the theoretical findings are applied to a case study, with highly reasonable results. The results show that the optimal routing, ship size, and sailing frequency with respect to each level of inventory costs and shipping costs can be determined using the proposed model. The optimal routing decision tends to be shipping the cargo through a hub as the hub charge is decreased or its efficiency improved. In addition, the proposed model not only provides a tool to analyze the trade-off between shipping costs and inventory costs, but it also provides flexibility on the decision-making for container carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号