共查询到20条相似文献,搜索用时 276 毫秒
1.
在电力系统的经济调度中,如何合理利用电力负荷的过去和现在来推测其未来价值,具有非常长远的社会经济价值.短期电力负荷数据具有明显的时间特征,传统的深度模型越来越多地应用于该领域.然而,深度模型可能存在梯度爆炸或梯度消失,为此,提出了一种注意力机制优化长短期记忆网络的短期负荷预测模型.该模型将长短期记忆网络单元中的激活函数改进为加权激活函数组,并加入注意力机制以提高预测精度. 相似文献
2.
准确的电力负荷预测对现代电力系统的安全经济运行至关重要.电力负荷预测可以表述为一个具有一定潜在空间依赖性的多变量时序预测问题.然而,大多数现有的电力负荷预测工作未能探索这种空间依赖关系.基于此,本文提出了一种基于时空图注意网络的短期电力负荷预测方法.提出一种基于时空图注意网络模块,该模块使用图注意层实现自适应的捕捉各用户间的潜在空间依赖性,同时使用门控卷积注意力层对各用户用电量在时间维度上进行自适应拟合,以提高网络的预测精度.实际数据实验表明,本文提出的模型整体预测精度提高明显,特别是在一定程度上缓解了长程预测精度恶化的问题,验证了所提方法的有效性与可行性. 相似文献
3.
为了挖掘电力负荷数据中的潜藏信息,提高负荷预测的精度,针对电力负荷强非线性、非平稳性等特点,提出一种基于变分模态分解(variational mode decomposition,VMD)、优化长短期神经网络(long-term and short-term memory network,LSTM)、改进的粒子群算法(improve particle swarm optimization,IPSO)优化门控循环单元(gated recurrent unit neural network,GRU)的混合预测模型。首先,使用相关性分析确定确定输入因素,再将负荷数据运用VMD算法结合样本熵分解为一系列本征模态分量(intrinsic mode fuction,IMF)和残差量,更加合理地确定分解层数和惩罚因子;其次,根据过零率将这些量划分为低频和高频,低频分量使用LSTM网络,高频分量利用IPSO-GRU网络分别进行预测;最后,将预测结果重构得到电力负荷的最终结果。仿真结果表明,相对于其它常规模型,该混合模型可有效的提取模态特征,具有更高的预测精度。 相似文献
4.
精准的短期电力负荷预测对保证电网安全稳定运行、能量优化管理、提高发电设备利用率和降低运行成本等具有重要作用。针对单变量场景下地区短期电力负荷预测问题,提出了一种基于多重滑动平均(moving average,MA)和卷积网络-长短期记忆网络(convolutional networks long short-term memory networks,CNN-LSTM)混合模型,并添加自注意力(self-attention)机制的预测方法。首先利用多重滑动平均将原始负荷数据分解为多个平稳序列,以降低数据的噪声和复杂度。接着将各一维序列数据变换为多维结构,使用CNN提取多个时间点间的内在关系。再输入到LSTM模型中训练,并使用自注意力机制进行加权融合以提高预测精度。最后把各序列预测值相加得到最终负荷预测值。为了验证该方法的有效性,在中国某地区电网间隔15分钟的真实负荷数据上进行了预测实验,并将预测结果与其他常见的模型预测结果进行对比。通过实验结果表明,在单变量短期电力负荷预测问题中该方法的准确性比其他方法更高。 相似文献
5.
负荷数据的高度随机性和不确定性,导致短期负荷预测的精度很难提升.为了提高短期负荷预测的准确度,提出了一种基于完全自适应噪声集合经验模态分解(CEEMDAN)与卷积神经网络(CNN)和门控循环单元(GRU)组合模型的短期负荷预测方法.首先,利用CEEMDAN模型将复杂的原始负荷序列分解为几个相对简单的子序列;其次,利用卷... 相似文献
6.
为更充分挖掘多元负荷序列间的有效信息,从而提高预测精度,提出了一种集成贝叶斯超参数优化算法、注意力机制的长期和短期时间序列网络(long and short-term time-series network with attention,LSTNet-attention)以及误差修正的短期负荷预测模型。首先,构建基于贝叶斯优化的LSTNet-attention模型进行初步预测,利用贝叶斯算法优化模型多个结构参数,降低人工设置参数的随机性,并通过注意力机制合理分配特征权重;然后,通过基于贝叶斯参数优化的极端梯度提升算法(extreme gradient boosting,XGBoost)误差修正模型来挖掘初步预测误差序列中潜在、未被利用的有效信息,进行误差预测和修正,进而得到最终的预测结果。通过使用澳大利亚某地真实负荷数据进行实证分析,实验结果表明,所提预测模型相较于其它模型具有更好的预测效果,可为负荷预测等工作提供一定参考。 相似文献
7.
为提高短期电力负荷预测精度,提出了基于变分模态分解(VMD:Variational Mode Decomposition)的CNN-BiLSTM-Att(Convolutional Neural Network-Bidirectional Long Short-Term Memory-Attention)的短期负荷预测模型。该模型将历史的负荷数据使用VMD分解成多个子序列负荷并结合天气、日期、工作日类型等因素作为输入特征,得到各个子序列负荷的预测值,然后相加重构组成实际负荷预测曲线。通过与其他模型实验对比,VMD-CNN-BiLSTM-Att模型在测试集上相比于其他模型均有所降低,在连续的周负荷预测中,日负荷预测的平均绝对百分比误差基本维持在1%~2%之间。在复杂负荷变化的非工作日中,平均绝对百分比误差相比CNN-LSTM降低0.13%。证明VMD-CNN-BiLSTM-Att短期负荷预测模型能提高电力负荷预测的精度。 相似文献
8.
针对超短期电力负荷预测,提出一种使用集合经验模态分解与样本熵对原始数据预处理,再用模拟退火算法优化深度置信网络的组合模型进行预测.为了减小时间序列数据因自相关性导致预测值滞后于真实值,对原始序列采用EEMD分解,根据各序列的SE值将序列重构,再使用SA对DBN各隐含层节点数寻优构成的SA-DBN模型对重构后的序列分别预... 相似文献
9.
基于神经网络的短期电力负荷预测 总被引:2,自引:0,他引:2
采用神经网络方案来进行短期电力负荷预测,探讨了负荷模型分类模,对应用于实际的神经网络算法进行了具体处理,如数据的归一化问题,网络权值与阈值的初始值选定,训练样本的选择策略等。 相似文献
10.
刀具的磨损状态影响着工件表面质量与加工稳定性,故实现其磨损量的准确监测对于保证加工可靠性、维持生产加工连续性具有积极作用.为进一步提高刀具磨损预测模型的泛化性能和准确度,提出一种融合注意力机制的多尺度卷积双向门控循环(multiscale convolutional bidirectional gated recurrent unit-attention,MSCBGRU-A)神经网络的刀具磨损预测方法,其由特征拓展模块、多尺度卷积模块、双向GRU模块、注意力模块、回归模块组成.首先,将切削力、声发射、振动信号作为输入信号,输入信号通过多尺度卷积模块获得多个尺度的刀具磨损输出特征图,将多个卷积通道输出的特征图输入到连接层进行首尾和层叠两种方式的连接来获得两种输出数据.然后,将两种输出数据分别输入到双向GRU模块与注意力模块,通过双向GRU模块学习输出特征图动态变化来获取时序特征,通过注意力模块对多尺度卷积神经网络的输出进行权值分配,强化对刀具磨损预测结果贡献度更大的特征.最后,通过回归模块对磨损值进行预测.经过对比实验引入混合域注意力机制的基于卷积块的注意力机制(convolutiona... 相似文献
11.
短期电力负荷预测有利于电力系统的高效运行,对电力市场实现有效调度有重要意义。短期电力负荷受多种因素影响,波动性大、随机性强,使得其预测准确率低。双向长短期记忆网络和卷积神经网络难以在短期负荷序列中提取足够多的信息,本文提出了一种结合注意力机制和残差网络的卷积神经网络-双向长短期记忆网络短期负荷预测方法。首先利用基准模型卷积神经网络-双向长短期记忆网络对输入特征进行信息提取,然后利用注意力机制突出提取到的关键信息,最后通过残差网络创建残差层以充分学习时序特征。通过某公开数据集进行实验,结果表明该方法的平均绝对百分比误差达到2.80%,均方根误差达到2.15,并与常用的五种模型预测结果对比,验证了所提模型的准确性及有效性。 相似文献
12.
钢铁企业短期负荷预测的研究 总被引:6,自引:0,他引:6
对大工业企业进行负荷预测是确定机组组合方案、企业与区域电网功率输送方案和负荷调度方案所不可缺少的.针对钢铁企业冲击负荷较多这个特点,使用灰色预测法、时间序列法、趋势外推法和回归预测法对某钢铁企业进行了48点负荷预测,结果表示除了必要的数据预处理以外,使用灰色理论和指数平滑法可以得到比较满意的结果. 相似文献
13.
基于事例推理短期负荷预测方法的改进 总被引:2,自引:0,他引:2
针对基于事例推理(CBR)短期负荷预测中的事例库组织,提出第一级按不同的时刻和星期类型粗分类、第二级按照模糊聚类方法细分类的二级分类方法,可以很好地实现不同预测环境之间的相似性和相异性;针对事例的检索,提出模糊优先比的定量属性检索方法,按此方法进行检索不但可以提高检索效率,还可以对检索过程进行控制.实际算例表明,以此方法进行负荷预测的周平均相对误差为2.620%,低于一般的CBR方法和单一预测方法. 相似文献
14.
基于自组织特征映射神经网络的短期负荷预测 总被引:5,自引:0,他引:5
提出了一种基于自组织特征映射神经网络(Kohmonen网络)的短期负荷预测方法,根据Kohonen网络的聚类特性,样本在输入时就已分好类。输入既有与负荷曲线平滑性有关的数据又有反映负荷周期性变化的数据。在学习训练时,区别于普通的无监督竞争学习采用有监督竞争学习方式,缩短了学习时间,提高了学习精度。实例分析征明了该方法的有效性。 相似文献
15.
电力系统在国家工业基础设施中起着举足轻重的作用,维持系统负荷高精度预测是保障电力系统高效供应的关键。针对负荷数据的非平稳性、随机性与非线性,负荷预测误差较大的问题,结合变分模态分解(variational mode decomposition, VMD)、经验小波变换(empirical wavelet transform, EWT)、改进的空洞卷积金字塔模块(improved atros spatial pyramid pooling, IASSP)、集成双向长短时记忆模块(ensemble BiLSTM,EBiLSTM),提出了一种短期电力负荷预测模型。为解决负荷数据的非平稳性引起的模型预测波动问题,通过变分模态分解方法与经验小波变换的结合分解为若干子序列,显著降低了原始负荷序列的复杂性;为提高模型预测精度,将分解的负荷子序列利用过零率指标划分高低频序列,在低频序列中构建一种时序依赖捕获模块EBiLSTM提取长期负荷特征,高频序列中构建特征提取模块IASSP提取局部负荷特征,最后累加各子序列的预测结果,实现电力系统负荷的短期预测。选取行业通用客观评价指标:平均绝对误差、均方根误差,... 相似文献
16.
基于RBF神经网络和专家系统的短期负荷预测方法 总被引:41,自引:2,他引:41
深入研究了天气和特殊事件对电力负荷的影响,建立了结合径向基(RBF)神经网络和专家系统来进行短期负荷预测的模型。利用RBF神经网络的非线性逼近能力预测出日负荷曲线,然后利用专家系统根据天气因素或特殊事件对负荷曲线进行修正,使其在天气突变等情况下也能达到较高的预测精度。利用该模型编制的实用化软件在西北电网的多个电力局投入实际应用,结果表明:该方法用BP神经网络相比,具有较高的预测精度,同时具有较强的实用性。 相似文献
17.
集成RS和SVR的电力系统短期负荷预测方法 总被引:1,自引:0,他引:1
方瑞明 《华侨大学学报(自然科学版)》2007,28(3):252-255
基于粗糙集(RS)理论和支持向量回归(SVR)方法,提出一种电力系统短期负荷预测方法.采用粗糙集理论对影响负荷预测的各因素进行约简,将约简后得到的最小条件属性集,以此确定输入样本的维数并构造训练样本,作为支持向量回归机的输入进行训练预测.在此基础上,利用已知历史负荷数据构造训练样本群,作为SVR的输入进行训练,采用训练完毕后的SVR模型进行负荷预测.实验结果表明,与神经网络方法和标准SVR方法相比,集成粗糙集和支持向量回归的负荷预测方法,可以在缩短训练时间的前提下获得较高的预测精度. 相似文献
18.
电力系统短期负荷预测的多神经网络Boosting集成模型 总被引:4,自引:0,他引:4
提出了一种改进的多神经网络集成自适应Boosting回归算法.算法中采用相对误差模型代替绝对误差模型,可以更接近于回归预测问题的要求,并在Boosting迭代过程中,在对训练集采样得到新的训练子集的同时,也对校验集采样得到新的校验子集,保证了两者的一致性.进而采用美国加州电力市场的实际数据,建立了由多个神经网络集成的电力系统短期负荷预测模型.预测结果表明,与传统的单网络预测模型相比,Boosting集成预测模型能显著提高模型输出的稳定性,增强网络结构及模型选择的可靠性,获得更高的预测精度. 相似文献
19.
针对模糊神经网络的BP学习算法提出改进,引入全局性较强的混沌搜索算法,提出一种基于混沌搜索学习算法的模糊神经网络模型.将改进的模型应用于短期负荷预测建模,应用我国南方某市电网的实际负荷数据进行实证研究.仿真结果显示改进后的模糊神经网络较改进前在同一样本预测中精确度提高了2.5%,增加算法运行时间仅为3.1 s,说明本文提出的新的负荷预测建模方法具有更好的预测效果. 相似文献
20.
突如其来的新型冠状病毒肺炎(COVID-19)疫情给电力负荷造成了严重的影响,为了有效应对疫情带来的影响,提高疫情影响下的短期负荷预测精度,提出了一种基于恐惧指数(FI)的疫情影响下短期电力负荷预测方法.利用疫情数据构建FI,与时间信息、历史负荷、气象条件一起作为广义回归神经网络(GRNN)模型的输入变量,用果蝇优化算法(FOA)对GRNN平滑因子进行优化,提高预测结果的准确度和稳定性,使用构建的预测模型进行预测.算例结果表明,该方法能有效提高疫情影响下短期负荷预测的精度,为重大灾难影响下的短期负荷预测提供参考与借鉴. 相似文献