首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
For years, interest has been constantly growing in biological tissue modelling. Particularly, the mechanical study of the brain has become a major topic in the field of biomechanics. A global model of this organ, including a realistic mesh and suitable constitutive laws for the different tissues, would find applications in various domains such as neurosurgery, haptic device design or car manufacturing to evaluate the possible trauma due to an impact.Several constitutive models have already been designed; regarding the strong strain-rate dependence of the stress-strain curves available in the literature, we decided to describe brain tissue as a viscoelastic medium through the use of the fractional derivation operator. Thanks to this approach, we can derive a convolution-based model with the Mittag-Leffler function as the regularized kernel.  相似文献   

3.
A study of ACO capabilities for solving the maximum clique problem   总被引:4,自引:0,他引:4  
This paper investigates the capabilities of the Ant Colony Optimization (ACO) meta-heuristic for solving the maximum clique problem, the goal of which is to find a largest set of pairwise adjacent vertices in a graph. We propose and compare two different instantiations of a generic ACO algorithm for this problem. Basically, the generic ACO algorithm successively generates maximal cliques through the repeated addition of vertices into partial cliques, and uses “pheromone trails” as a greedy heuristic to choose, at each step, the next vertex to enter the clique. The two instantiations differ in the way pheromone trails are laid and exploited, i.e., on edges or on vertices of the graph. We illustrate the behavior of the two ACO instantiations on a representative benchmark instance and we study the impact of pheromone on the solution process. We consider two measures—the re-sampling and the dispersion ratio—for providing an insight into the performance at run time. We also study the benefit of integrating a local search procedure within the proposed ACO algorithm, and we show that this improves the solution process. Finally, we compare ACO performance with that of three other representative heuristic approaches, showing that the former obtains competitive results.  相似文献   

4.
Definitions of fractional derivatives and fractional powers of positive operators are considered. The connection of fractional derivatives with fractional powers of positive operators is presented. The formula for fractional difference derivative is obtained.  相似文献   

5.
6.
Consider an inverse problem for the time-fractional diffusion equation in one dimensional spatial space. The aim is to determine the initial status and heat flux on the boundary simultaneously from heat measurement data given on the other boundary. Using the Laplace transform and the unique extension technique, the uniqueness for this inverse problem is proven. Then we construct a regularizing scheme for the reconstruction of boundary flux for known initial status. The convergence rate of the regularizing solution is established under some a priori information about the exact solution. Moreover, the initial distribution can also be recovered approximately from our regularizing scheme. Finally we present some numerical examples, which show the validity of the proposed reconstruction scheme.  相似文献   

7.
We consider initial value/boundary value problems for fractional diffusion-wave equation: , where 0<α?2, where L is a symmetric uniformly elliptic operator with t-independent smooth coefficients. First we establish the unique existence of the weak solution and the asymptotic behavior as the time t goes to ∞ and the proofs are based on the eigenfunction expansions. Second for α∈(0,1), we apply the eigenfunction expansions and prove (i) stability in the backward problem in time, (ii) the uniqueness in determining an initial value and (iii) the uniqueness of solution by the decay rate as t→∞, (iv) stability in an inverse source problem of determining t-dependent factor in the source by observation at one point over (0,T).  相似文献   

8.
One of the basic operations in communication networks consists in establishing routes for connection requests between physically separated network nodes. In many situations, either due to technical constraints or to quality-of-service and survivability requirements, it is required that no two routes interfere with each other. These requirements apply in particular to routing and admission control in large-scale, high-speed and optical networks. The same requirements also arise in a multitude of other applications such as real-time communications, vlsi design, scheduling, bin packing, and load balancing. This problem can be modeled as a combinatorial optimization problem as follows. Given a graph G representing a network topology, and a collection T={(s 1,t 1)...(s k ,t k )} of pairs of vertices in G representing connection request, the maximum edge-disjoint paths problem is an NP-hard problem that consists in determining the maximum number of pairs in T that can be routed in G by mutually edge-disjoint s i t i paths. We propose an ant colony optimization (aco) algorithm to solve this problem. aco algorithms are approximate algorithms that are inspired by the foraging behavior of real ants. The decentralized nature of these algorithms makes them suitable for the application to problems arising in large-scale environments. First, we propose a basic version of our algorithm in order to outline its main features. In a subsequent step we propose several extensions of the basic algorithm and we conduct an extensive parameter tuning in order to show the usefulness of those extensions. In comparison to a multi-start greedy approach, our algorithm generates in general solutions of higher quality in a shorter amount of time. In particular the run-time behaviour of our algorithm is one of its important advantages.
Work partially supported by the fet Integrated Project 15964 (aeolus), and by the Spanish cicyt projects tin2005-09198-c02-02 (asce), tin2005-08818-c04-02 (oplink) and tin2005-25859-e. C. Blum also acknowledges support by the ramón y cajal postdoctoral program of the Spanish Ministry of Science and Technology. Preliminary versions of this work were presented at the 1st European Workshop on Evolutionary Computation in Communications, Networks, and Connected Systems, lncs 3005:160–169, Springer 2004, and in the 9th Intl. Workshop on Nature Inspired Distributed Computing, p. 239, ieee 2006.  相似文献   

9.
In this paper, we shall discuss the properties of the well-known Mittag-Leffler function, and consider the existence and uniqueness of solution of the initial value problem for fractional differential equation involving Riemann-Liouville sequential fractional derivative by using monotone iterative method.  相似文献   

10.
11.
This paper studies the learning process in an ant colony optimization algorithm designed to solve the problem of ordering cars on an assembly line (car-sequencing problem). This problem has been shown to be NP-hard and evokes a great deal of interest among practitioners. Learning in an ant algorithm is achieved by using an artificial pheromone trail, which is a central element of this metaheuristic. Many versions of the algorithm are found in literature, the main distinction among them being the management of the pheromone trail. Nevertheless, few of them seek to perfect learning by modifying the internal structure of the trail. In this paper, a new pheromone trail structure is proposed that is specifically adapted to the type of constraints in the car-sequencing problem. The quality of the results obtained when solving three sets of benchmark problems is superior to that of the best solutions found in literature and shows the efficiency of the specialized trail.  相似文献   

12.
This paper presents ACO_GLS, a hybrid ant colony optimization approach coupled with a guided local search, applied to a layout problem. ACO_GLS is applied to an industrial case, in a train maintenance facility of the French railway system (SNCF). Results show that an improvement of near 20% is achieved with respect to the actual layout. Since the problem is modeled as a quadratic assignment problem (QAP), we compared our approach with some of the best heuristics available for this problem. Experimental results show that ACO_GLS performs better for small instances, while its performance is still satisfactory for large instances.  相似文献   

13.
We propose an exact lexicographic dynamic programming pricing algorithm for solving the Fractional Bin Packing Problem with column generation. The new algorithm is designed for generating maximal columns of minimum reduced cost which maximize, lexicographically, one of the measures of maximality we investigate. Extensive computational experiments reveal that a column generation algorithm based on this pricing technique can achieve a substantial reduction in the number of columns and the computing time, also when combined with a classical smoothing technique from the literature.  相似文献   

14.
介绍了一种求解TSP问题的算法—改进的蚁群算法,算法通过模拟蚁群搜索食物的过程,可用于求解TSP问题,算法的主要特点是:正反馈、分布式计算、与某种启发式算法相结合.通过对传统蚁群算法的改进可以得到较好的结果.计算机仿真结果表明了该算法的有效性.  相似文献   

15.
Ant colony optimization for continuous domains   总被引:2,自引:0,他引:2  
In this paper we present an extension of ant colony optimization (ACO) to continuous domains. We show how ACO, which was initially developed to be a metaheuristic for combinatorial optimization, can be adapted to continuous optimization without any major conceptual change to its structure. We present the general idea, implementation, and results obtained. We compare the results with those reported in the literature for other continuous optimization methods: other ant-related approaches and other metaheuristics initially developed for combinatorial optimization and later adapted to handle the continuous case. We discuss how our extended ACO compares to those algorithms, and we present some analysis of its efficiency and robustness.  相似文献   

16.
The multi-objective resource allocation problem (MORAP) addresses the important issue which seeks to find the expected objectives by allocating the limited amount of resource to various activates. Resources may be manpower, assets, raw material or anything else in limited supply which can be used to accomplish the goals. The goals may be objectives (i.e., minimizing costs, or maximizing efficiency) usually driven by specific future needs. In this paper, in order to obtain a set of Pareto solution efficiently, we proposed a modified version of ant colony optimization (ACO), in this algorithm we try to increase the efficiency of algorithm by increasing the learning of ants. Effectiveness and efficiency of proposed algorithm was validated by comparing the result of ACO with hybrid genetic algorithm (hGA) which was applied to MORAP later.  相似文献   

17.
The study of fractional variational problems in terms of a combined fractional Caputo derivative is introduced. Necessary optimality conditions of Euler-Lagrange type for the basic, isoperimetric, and Lagrange variational problems are proved, as well as transversality and sufficient optimality conditions. This allows to obtain necessary and sufficient Pareto optimality conditions for multiobjective fractional variational problems.  相似文献   

18.
In this paper, the authors study the forward and inverse problems for a fractional boundary value problem with Dirichlet boundary conditions. The existence and uniqueness of solutions for the forward problem is first proved. Then an inverse source problem is considered.  相似文献   

19.
Fractional (or non-integer) differentiation is an important concept both from theoretical and applicational points of view. The study of problems of the calculus of variations with fractional derivatives is a rather recent subject, the main result being the fractional necessary optimality condition of Euler-Lagrange obtained in 2002. Here we use the notion of Euler-Lagrange fractional extremal to prove a Noether-type theorem. For that we propose a generalization of the classical concept of conservation law, introducing an appropriate fractional operator.  相似文献   

20.
Traditional methods for the numerical approximation of fractional derivatives have a number of drawbacks due to the non-local nature of the fractional differential operators. The main problems are the arithmetic complexity and the potentially high memory requirements when they are implemented on a computer. In a recent paper, Yuan and Agrawal have proposed an approach for operators of order α ∈ (0,1) that differs substantially from the standard methods. We extend the method to arbitrary α > 0, , and give an analysis of the main properties of this approach. In particular it turns out that the original algorithm converges rather slowly. Based on our analysis we are able to identify the source of this slow convergence and propose some modifications leading to a much more satisfactory behaviour. Similar results are obtained for a closely related method proposed by Chatterjee. Dedicated to Professor Paul L. Butzer on the occasion of his 80th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号