首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study complexity and approximation of min weighted node coloring in planar, bipartite and split graphs. We show that this problem is NP-hard in planar graphs, even if they are triangle-free and their maximum degree is bounded above by 4. Then, we prove that min weighted node coloring is NP-hard in P8-free bipartite graphs, but polynomial for P5-free bipartite graphs. We next focus on approximability in general bipartite graphs and improve earlier approximation results by giving approximation ratios matching inapproximability bounds. We next deal with min weighted edge coloring in bipartite graphs. We show that this problem remains strongly NP-hard, even in the case where the input graph is both cubic and planar. Furthermore, we provide an inapproximability bound of 7/6−ε, for any ε>0 and we give an approximation algorithm with the same ratio. Finally, we show that min weighted node coloring in split graphs can be solved by a polynomial time approximation scheme.  相似文献   

2.
Polar cographs     
Polar graphs are a natural extension of some classes of graphs like bipartite graphs, split graphs and complements of bipartite graphs. A graph is (s,k)-polar if there exists a partition A,B of its vertex set such that A induces a complete s-partite graph (i.e., a collection of at most s disjoint stable sets with complete links between all sets) and B a disjoint union of at most k cliques (i.e., the complement of a complete k-partite graph).Recognizing a polar graph is known to be NP-complete. These graphs have not been extensively studied and no good characterization is known. Here we consider the class of polar graphs which are also cographs (graphs without induced path on four vertices). We provide a characterization in terms of forbidden subgraphs. Besides, we give an algorithm in time O(n) for finding a largest induced polar subgraph in cographs; this also serves as a polar cograph recognition algorithm. We examine also the monopolar cographs which are the (s,k)-polar cographs where min(s,k)?1. A characterization of these graphs by forbidden subgraphs is given. Some open questions related to polarity are discussed.  相似文献   

3.
We prove that a triangle-free graph G is a tolerance graph if and only if there exists a set of consecutively ordered stars that partition the edges of G. Since tolerance graphs are weakly chordal, a tolerance graph is bipartite if and only if it is triangle-free. We, therefore, characterize those tolerance graphs that are also bipartite. We use this result to show that in general, the class of interval bigraphs properly contains tolerance graphs that are triangle-free (and hence bipartite).  相似文献   

4.
We study parallel complexity of signed graphs motivated by the highly complex genetic recombination processes in ciliates. The molecular gene assembly operations have been modeled by operations of signed graphs, i.e., graphs where the vertices have a sign + or −. In the optimization problem for signed graphs one wishes to find the parallel complexity by which the graphs can be reduced to the empty graph. We relate parallel complexity to matchings in graphs for some natural graph classes, especially bipartite graphs. It is shown, for instance, that a bipartite graph G has parallel complexity one if and only if G has a unique perfect matching. We also formulate some open problems of this research topic.  相似文献   

5.
A graph is balanced if its clique-matrix contains no edge–vertex incidence matrix of an odd chordless cycle as a submatrix. While a forbidden induced subgraph characterization of balanced graphs is known, there is no such characterization by minimal forbidden induced subgraphs. In this work, we provide minimal forbidden induced subgraph characterizations of balanced graphs restricted to graphs that belong to one of the following graph classes: complements of bipartite graphs, line graphs of multigraphs, and complements of line graphs of multigraphs. These characterizations lead to linear-time recognition algorithms for balanced graphs within the same three graph classes.  相似文献   

6.
Terry A. McKee   《Discrete Mathematics》2003,260(1-3):231-238
Robert E. Jamison characterized chordal graphs by the edge set of every k-cycle being the symmetric difference of k−2 triangles. Strongly chordal (and chordal bipartite) graphs can be similarly characterized in terms of the distribution of triangles (respectively, quadrilaterals). These results motivate a definition of ‘strongly chordal bipartite graphs’, forming a class intermediate between bipartite interval graphs and chordal bipartite graphs.  相似文献   

7.
We consider bipartite graphs of degree Δ≥2, diameter D=3, and defect 2 (having 2 vertices less than the bipartite Moore bound). Such graphs are called bipartite (Δ, 3, ?2) ‐graphs. We prove the uniqueness of the known bipartite (3, 3, ?2) ‐graph and bipartite (4, 3, ?2)‐graph. We also prove several necessary conditions for the existence of bipartite (Δ, 3, ?2) ‐graphs. The most general of these conditions is that either Δ or Δ?2 must be a perfect square. Furthermore, in some cases for which the condition holds, in particular, when Δ=6 and Δ=9, we prove the non‐existence of the corresponding bipartite (Δ, 3, ?2)‐graphs, thus establishing that there are no bipartite (Δ, 3, ?2)‐graphs, for 5≤Δ≤10. © 2009 Wiley Periodicals, Inc. J Graph Theory 61: 271–288, 2009  相似文献   

8.
Motivated by a problem in communication complexity, we study cover-structure graphs (cs-graphs), defined as intersection graphs of maximal monochromatic rectangles in a matrix. We show that not every graph is a cs-graph. Especially, squares and odd holes are not cs-graphs.It is natural to look at graphs (beautiful graphs) having the property that each induced subgraph is a cs-graph. They form a new class of Berge graphs. We make progress towards their characterization by showing that every square-free bipartite graph is beautiful, and that beautiful line graphs of square-free bipartite graphs are just Path-or-Even-Cycle-of-Cliques graphs.  相似文献   

9.
We generalize earlier work which gave a method of construction for bipartite graphs which are obtained as the set of maximal or minimal elements of a certain cycle-free partial order. The method is extended here to produce a 1-arc-transitive bipartite graph in a ‘free’ way, starting with any partial order with greatest and least element and with instructions on its points about how they will ramify in the extension. A key feature of our work is the interplay between properties of the initial partial order, the extended partial order, and the bipartite graph which results. We also extend the earlier work by giving a complete characterization of all 2-CS-transitive cycle-free partial orders. In addition, we discuss the completeness of the constructed partial orders, in the sense of Dedekind and MacNeille, and remark that the bipartite graph constructed can only be 2-arc-transitive in the cycle-free case.  相似文献   

10.
《Discrete Mathematics》2023,346(2):113249
Barnette's Conjecture claims that all cubic, 3-connected, planar, bipartite graphs are Hamiltonian. We give a translation of this conjecture into the matching-theoretic setting. This allows us to relax the requirement of planarity to give the equivalent conjecture that all cubic, 3-connected, Pfaffian, bipartite graphs are Hamiltonian.A graph, other than the path of length three, is a brace if it is bipartite and any two disjoint edges are part of a perfect matching. Our perspective allows us to observe that Barnette's Conjecture can be reduced to cubic, planar braces. We show a similar reduction to braces for cubic, 3-connected, bipartite graphs regarding four stronger versions of Hamiltonicity. Note that in these cases we do not need planarity.As a practical application of these results, we provide some supplements to a generation procedure for cubic, 3-connected, planar, bipartite graphs discovered by Holton et al. (1985) [14]. These allow us to check whether a graph we generated is a brace.  相似文献   

11.
A matching covered graph is a non-trivial connected graph in which every edge is in some perfect matching. A non-bipartite matching covered graph G is near-bipartite if there are two edges e1 and e2 such that Ge1e2 is bipartite and matching covered. In 2000, Fischer and Little characterized Pfaffian near-bipartite graphs in terms of forbidden subgraphs [I. Fischer, C.H.C. Little, A characterization of Pfaffian near bipartite graphs, J. Combin. Theory Ser. B 82 (2001) 175-222.]. However, their characterization does not imply a polynomial time algorithm to recognize near-bipartite Pfaffian graphs. In this article, we give such an algorithm.We define a more general class of matching covered graphs, which we call weakly near-bipartite graphs. This class includes the near-bipartite graphs. We give a polynomial algorithm for recognizing weakly near-bipartite Pfaffian graphs. We also show that Fischer and Little’s characterization of near-bipartite Pfaffian graphs extends to this wider class.  相似文献   

12.
Associated to a simple undirected graph G is a simplicial complex ΔG whose faces correspond to the independent sets of G. We call a graph G shellable if ΔG is a shellable simplicial complex in the non-pure sense of Björner-Wachs. We are then interested in determining what families of graphs have the property that G is shellable. We show that all chordal graphs are shellable. Furthermore, we classify all the shellable bipartite graphs; they are precisely the sequentially Cohen-Macaulay bipartite graphs. We also give a recursive procedure to verify if a bipartite graph is shellable. Because shellable implies that the associated Stanley-Reisner ring is sequentially Cohen-Macaulay, our results complement and extend recent work on the problem of determining when the edge ideal of a graph is (sequentially) Cohen-Macaulay. We also give a new proof for a result of Faridi on the sequentially Cohen-Macaulayness of simplicial forests.  相似文献   

13.
A new class of graphs, called weakly bipartite graphs, is introduced. A graph is called weakly bipartite if its bipartite subgraph polytope coincides with a certain polyhedron related to odd cycle constraints. The class of weakly bipartite graphs contains for instance the class of bipartite graphs and the class of planar graphs. It is shown that the max-cut problem can be solved in polynomial time for weakly bipartite graphs. The polynomical algorithm presented is based on the ellipsoid method and an algorithm that computes a shortest path of even length.  相似文献   

14.
In this paper we refine the notion of tree-decomposition by introducing acyclic (R,D)-clustering, where clusters are subsets of vertices of a graph and R and D are the maximum radius and the maximum diameter of these subsets. We design a routing scheme for graphs admitting induced acyclic (R,D)-clustering where the induced radius and the induced diameter of each cluster are at most 2. We show that, by constructing a family of special spanning trees, one can achieve a routing scheme of deviation Δ?2R with labels of size bits per vertex and O(1) routing protocol for these graphs. We investigate also some special graph classes admitting induced acyclic (R,D)-clustering with induced radius and diameter less than or equal to 2, namely, chordal bipartite, homogeneously orderable, and interval graphs. We achieve the deviation Δ=1 for interval graphs and Δ=2 for chordal bipartite and homogeneously orderable graphs.  相似文献   

15.
研究两类广义控制问题的复杂性: k-步长控制问题和k-距离控制问题, 证明了k-步长控制问题在弦图和平面二部图上都是NP-完全的. 作为上述结果的推论, 给出了k-距离控制问题在弦图和二部图上NP-完全性的新的证明, 并进一步证明了k-距离控制问题在平面二部图上也是NP-完全的.  相似文献   

16.
We consider the class of I‐graphs I(n,j,k), which is a generalization over the class of the generalized Petersen graphs. We study different properties of I‐graphs, such as connectedness, girth, and whether they are bipartite or vertex‐transitive. We give an efficient test for isomorphism of I‐graphs and characterize the automorphism groups of I‐graphs. Regular bipartite graphs with girth at least 6 can be considered as Levi graphs of some symmetric combinatorial configurations. We consider configurations that arise from bipartite I‐graphs. Some of them can be realized in the plane as cyclic astral configurations, i.e., as geometric configurations with maximal isometric symmetry. © 2005 Wiley Periodicals, Inc.  相似文献   

17.
The nullity of a graph is defined to be the multiplicity of the eigenvalue zero in the spectrum of the adjacency matrix of the graph. In this paper, we obtain the nullity set of bipartite graphs of order n, and characterize the bipartite graphs with nullity n-4 and the regular bipartite graphs with nullity n-6.  相似文献   

18.
We are interested in coloring the edges of a mixed graph, i.e., a graph containing unoriented and oriented edges. This problem is related to a communication problem in job-shop scheduling systems. In this paper we give general bounds on the number of required colors and analyze the complexity status of this problem. In particular, we provide NP-completeness results for the case of outerplanar graphs, as well as for 3-regular bipartite graphs (even when only 3 colors are allowed, or when 5 colors are allowed and the graph is fully oriented). Special cases admitting polynomial-time solutions are also discussed.  相似文献   

19.
An orthogonal ray graph is an intersection graph of horizontal and vertical rays (half-lines) in the xy-plane. An orthogonal ray graph is a 2-directional orthogonal ray graph if all the horizontal rays extend in the positive x-direction and all the vertical rays extend in the positive y-direction. We first show that the class of orthogonal ray graphs is a proper subset of the class of unit grid intersection graphs. We next provide several characterizations of 2-directional orthogonal ray graphs. Our first characterization is based on forbidden submatrices. A characterization in terms of a vertex ordering follows immediately. Next, we show that 2-directional orthogonal ray graphs are exactly those bipartite graphs whose complements are circular arc graphs. This characterization implies polynomial-time recognition and isomorphism algorithms for 2-directional orthogonal ray graphs. It also leads to a characterization of 2-directional orthogonal ray graphs by a list of forbidden induced subgraphs. We also show a characterization of 2-directional orthogonal ray trees, which implies a linear-time algorithm to recognize such trees. Our results settle an open question of deciding whether a (0,1)-matrix can be permuted to avoid the submatrices .  相似文献   

20.
The strong isometric dimension and the adjacent isometric dimension of graphs are compared. The concepts are equivalent for graphs of diameter 2 in which case the problem of determining these dimensions can be reduced to a covering problem with complete bipartite graphs. Using this approach several exact strong and adjacent dimensions are computed (for instance of the Petersen graph) and a positive answer is given to the Problem 4.1 of Fitzpatrick and Nowakowski [The strong isometric dimension of finite reflexive graphs, Discuss. Math. Graph Theory 20 (2000) 23-38] whether there is a graph G with the strong isometric dimension bigger that ⌈|V(G)|/2⌉.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号