首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we study the exponential synchronization problem of a class of chaotic delayed neural networks with impulsive and stochastic perturbations. The involved time delays include time-varying delays and unbounded distributed delays. Employing the method of impulsive delay differential inequality, several new sufficient conditions ensuring the exponential synchronization are obtained, which can be easily checked by LMI Control Toolbox in Matlab. Compared with the previous methods, our method does not resort to complicated Lyapunov–Krasovkii, and the results derived are independent of the time-varying delays and do not require the differentiability of delay functions and the monotony of the activation functions. Finally, a numerical example and its simulation is given to show the effectiveness of the obtained results in this paper.  相似文献   

2.
This paper considers the chaotic synchronization problem of neural networks with time-varying and distributed delays using impulsive control method. By utilizing the stability theory for impulsive functional differential equations, several impulsive control laws are derived to guarantee the exponential synchronization of neural networks with time-varying and distributed delays. It is shown that chaotic synchronization of the networks is heavily dependent on the designed impulsive controllers. Moreover, these conditions are expressed in terms of LMI and can be easily checked by MATLAB LMI toolbox. Finally, a numerical example and its simulation are given to show the effectiveness and advantage of the proposed control schemes.  相似文献   

3.
This paper is concerned with the global exponential synchronization problem of two identical nonlinear time-delay Lur’e systems via delayed impulsive control. Some novel impulsive synchronization criteria are obtained by introducing a discontinuous Lyapunov function and by using the Lyapunov–Razumikhin technique, which are expressed in forms of linear matrix inequalities. The derived criteria reveal the effects of impulsive input delays and impulsive intervals on the stability of synchronization error systems. Then, sufficient conditions on the existence of a delayed impulsive controller are derived by employing these newly-obtained synchronization criteria. Additionally, some synchronization criteria for two identical time-delay Lur’e systems with impulsive effects are presented by using delayed continuous feedback control. The synchronization criteria via delayed continuous feedback control can deal with the case when the impulsive control strategy fails to synchronize two identical impulsive time-delay Lur’e systems. Three numerical examples are provided to illustrate the efficiency of the obtained results.  相似文献   

4.
In this paper, periodic and chaotic synchronizations between two distinct dynamical systems under specific constraints are investigated from the theory of discontinuous dynamical systems. The analytical conditions for the sinusoidal synchronization of the pendulum and Duffing oscillator were obtained, and the invariant domain of sinusoidal synchronization is achieved. From analytical conditions, the control parameter map is developed. Numerical illustrations for partial and full sinusoidal synchronizations of chaotic and periodic motions of the controlled pendulum with the Duffing oscillator are carried out. This paper presents how to apply the theory of discontinuous dynamical systems to dynamical system synchronization with specific constraints. The function synchronization of two distinct dynamical systems with specific constraints should be identified only by G-functions. The significance of function synchronization of distinct dynamical systems is to make the synchronicity behaviors hidden, which is very useful for telecommunication synchronization and network security.  相似文献   

5.
In this Letter the issue of impulsive Synchronization of a hyperchaotic Lorenz system is developed. We propose an impulsive synchronization scheme of the hyperchaotic Lorenz system including chaotic systems. Some new and sufficient conditions on varying impulsive distances are established in order to guarantee the synchronizability of the systems using the synchronization method. In particular, some simple conditions are derived for synchronizing the systems by equal impulsive distances. The boundaries of the stable regions are also estimated. Simulation results show the proposed synchronization method to be effective.  相似文献   

6.
The problem of impulsive generalized synchronization for a class of nonlinear discrete chaotic systems is investigated in this paper. Firstly the response system is constructed based on the impulsive control theory. Then by the asymptotic stability criteria of discrete systems with impulsive effects, some sufficient conditions for asymptotic H-synchronization between the drive system and response system are obtained. Numerical simulations are given to show the effectiveness of the proposed method.  相似文献   

7.
In this paper, a new type of anticipating synchronization, called time-varying anticipating synchronization, is defined firstly. Then novel adaptive schemes for time-varying anticipating synchronization of certain or uncertain chaotic dynamical systems are designed based on the Lyapunov function and invariance principle. The update gain of coupling strength can be automatically adapted to a suitable strength depending on the initial values and can be properly chosen to adjust the speed of achieving synchronization, so these schemes are analytical and simple to implement in practice. A classical chaotic dynamical system is used to demonstrate the effectiveness of the proposed adaptive schemes with or without parameter uncertainties.  相似文献   

8.
The issues of impulsive control and synchronization of chaotic Hindmarsh–Rose model are investigated in this paper. Based on impulsive control theory of dynamical systems, some simple yet less conservative criteria ensuring impulsive stabilization and synchronization of the Hindmarsh–Rose models are derived analytically. Furthermore, two numerical results are presented to demonstrate the effectiveness of the proposed control techniques. It is shown that the obtained results should be helpful to understand dynamical mechanism of signal encoding and transduction from information processing of real neuronal activity.  相似文献   

9.
In this paper, impulsive control for master–slave synchronization schemes consisting of identical chaotic neural networks is studied. Impulsive control laws are derived based on linear static output feedback. A sufficient condition for global asymptotic synchronization of master–slave chaotic neural networks via output feedback impulsive control is established, in which synchronization is proven in terms of the synchronization errors between the full state vectors. An LMI-based approach for designing linear static output feedback impulsive control laws to globally asymptotically synchronize chaotic neural networks is discussed. With the help of LMI solvers, linear output feedback impulsive controllers can be easily obtained along with the bounds of the impulsive intervals for global asymptotic synchronization. The method is finally illustrated by numerical simulations.  相似文献   

10.
In this paper, by utilizing impulsive control theory and T-S fuzzy model, the fuzzy impulsive control and synchronization of general chaotic system are proposed. Some less conservative and more general conditions are obtained to guarantee the globally asymptotical stability for the impulsive control and synchronization of general chaotic system based on T-S fuzzy model. Moreover, some criteria of globally exponential stability of chaotic system are also derived. Finally, some numerical simulations are given to demonstrate the effectiveness of the proposed control method.  相似文献   

11.
In this paper, the problem of exponential synchronization of quaternion-valued coupled systems based on event-triggered impulsive control is investigated for the first time. It should be pointed out that the coupling strength is quaternion-valued and time-varying, which makes our model more in line with practical models. First, we prove that event-triggered impulsive control can exclude Zeno behavior. Then, based on the Lyapunov method and the graph theory, some sufficient conditions are derived to ensure that quaternion-valued coupled systems reach synchronization. Furthermore, as an application of our theoretical results, exponential synchronization of quaternion-valued Kuramoto oscillators is studied in detail and a synchronization criterion is presented. Finally, some numerical simulations are given to show the effectiveness of our theoretical results.  相似文献   

12.
Song Zheng 《Complexity》2016,21(6):343-355
This article is concerned with the problem of synchronization between two uncertain complex‐variable chaotic systems with parameters perturbation and discontinuous unidirectional coupling. Based on the stability theory and comparison theorem of differential equations, some sufficient conditions for the complete synchronization and generalized synchronization are obtained. The theoretical results show that the two uncertain complex‐variable chaotic systems with discontinuous unidirectional coupling can achieve synchronization if the time‐average coupling strength is large enough. Finally, numerical examples are examined to illustrate the feasibility and effectiveness of the analytical results. © 2015 Wiley Periodicals, Inc. Complexity 21: 343–355, 2016  相似文献   

13.
In this paper, the impulsive exponential synchronization problem for time-delayed coupled chaotic systems is investigated. By establishing an impulsive differential delay inequality and using the property of P-cone, some simple conditions of impulsive exponential synchronization of two coupled chaotic systems are derived. To illustrate the effectiveness of the new scheme, some numerical examples are given.  相似文献   

14.
In this paper, we investigate the anticipating synchronization of a class of coupled chaotic systems through discontinuous feedback control. The stability criteria for the involved error dynamical system are obtained by means of model transformation incorporated with Lyapunov functional and linear matrix inequality. Also, we discuss the optimal designed controller based on the obtained criteria. The numerical simulation is presented to demonstrate the theoretical results.  相似文献   

15.
This paper discusses the synchronization of the chaotic system. Some new and less conservative sufficient conditions are established by impulsive control method with channel time-delay and different time-varying parameter uncertainties. An example and its simulations are finally included to visualize the effectiveness and feasibility of the method.  相似文献   

16.
针对一类非线性时滞混沌系统,提出了一种新的自适应脉冲同步方案.首先基于Lyapunov稳定性理论、自适应控制理论及脉冲控制理论设计了自适应控制器、脉冲控制器及参数自适应律,然后利用推广的Barbalat引理,理论证明响应系统与驱动系统全局渐近同步,并给出了相应的充分条件.方案利用参数逼近Lipschitz常数,从而取消了Lipschitz常数已知的假设.两个数值仿真例子表明本方法的有效性.  相似文献   

17.
This paper concerns the problem of global exponential synchronization for a class of switched neural networks with time-varying delays and unbounded distributed delays via impulsive control method. By using Lyapunov stability theory, new synchronization criterion is derived. In our synchronization criterion, the switching law can be arbitrary and the concept of average impulsive interval is utilized such that the obtained synchronization criterion is less conservative than those based on maximum of impulsive intervals. Numerical simulations are given to show the effectiveness and less conservativeness of the theoretical results.  相似文献   

18.
In this paper, we investigate the synchronization of a class of structurally nonequivalent chaotic systems with time delays. The nonequivalence could be parameter mismatches, differences in the time delays or more complicated nonequivalent structures. We give a unified approach, via unidirectional and impulsive control, to them achieving lag synchronization. Then we apply this method to typical time-delay chaotic systems: Mackey–Glass and Ikeda models. The corresponding estimations are given. Lastly, we compare the results with existing results.  相似文献   

19.
This paper studies the synchronization problem of the unified chaotic system. Three different methods, linear feedback method, nonlinear feedback method and impulsive control method are used to control synchronization of the unified chaotic systems. Based on the Lyapunov stability theory and impulsive control method, the conditions of synchronization are discussed, and they are also proved theoretically. Numerical simulations show the effectiveness of the three different methods.  相似文献   

20.
In this paper, a simple adaptive feedback control is proposed for full and reduced-order synchronization of time-varying and strictly uncertain chaotic systems. Our method uses only one feedback gain with parameter adaptation law and converges very fast even in the presence of noise. For full synchronization, a drive-response system consisting of two second-order identical parametrically excited oscillators achieve global synchronization; while for reduced-order synchronization, the dynamical evolution of a second-order parametrically driven oscillator is synchronized with the projection of a third-order time-varying chaotic system. The effectiveness of our approach is demonstrated using numerical simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号