首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Ibragimov (2007) [13] a general theorem on conservation laws was proved. In Gandarias (2011) and Ibragimov (2011) [7], [15] the concepts of self-adjoint and quasi self-adjoint equations were generalized and the definitions of weak self-adjoint equations and nonlinearly self-adjoint equations were introduced. In this paper, we find the subclasses of nonlinearly self-adjoint porous medium equations. By using the property of nonlinear self-adjointness, we construct some conservation laws associated with classical and nonclassical generators of the differential equation.  相似文献   

2.
Group classification of the perturbed nonlinear filtration equation is performed assuming that the perturbation is an arbitrary function of the dependent variable. The nonlinear self-adjointness of the equation under consideration is investigated. Using these results, the approximate conservation laws are constructed.  相似文献   

3.
Conservation laws for nonlinear telegraph equations   总被引:2,自引:0,他引:2  
A complete conservation law classification is given for nonlinear telegraph (NLT) systems with respect to multipliers that are functions of independent and dependent variables. It turns out that a very large class of NLT systems admits four nontrivial local conservation laws. The results of this work are summarized in tables which display all multipliers, fluxes and densities for the corresponding conservation laws. A physical example is considered for possible applications.  相似文献   

4.
It is known (Ibragimov, 2011; Galiakberova and Ibragimov, 2013) [14,18] that the property of nonlinear self-adjointness allows to associate conservation laws of the equations under study, with their symmetries. In this paper we show that, even when the equation is nonlinearly self-adjoint with a non differential substitution, finding the explicit form of the differential substitution can provide new conservation laws associated to its symmetries. By using the general theorem on conservation laws (Ibragimov, 2007) [11] and the property of nonlinear self-adjointness we find some new conservation laws for the modified Harry-Dym equation. By using a differential substitution we construct a conservation law for the Harry-Dym equation, which has not been derived before using Ibragimov method.  相似文献   

5.
In this work we study the conservation laws of a modified lubrication equation, which describes the dynamics of the interfacial motion in phase transition. We show that the equation is nonlinear self-adjoint and has an exact Lagrangian with an auxiliary function. As a result, by a general theorem on conservation laws proved by Nail Ibragimov recently and Noether’s theorem, some new conservation laws for the equation are obtained. Our results show that the non-locally defined conservation laws generated by Noether’s theorem are equivalent to the local ones given by Ibragimov’s theorem.  相似文献   

6.
We study the scalar conservation law with a noisy nonlinear source, namely,u l + f(u)x = h(u, x, t) + g(u)W(t), whereW(t) is the white noise in the time variable, and we analyse the Cauchy problem for this equation where the initial data are assumed to be deterministic. A method is proposed to construct approximate weak solutions, and we then show that this yields a convergent sequence. This sequence converges to a (pathwise) solution of the Cauchy problem. The equation can be considered as a model of deterministic driven phase transitions with a random perturbation in a system of two constituents. Finally we show some numerical results motivated by two-phase flow in porous media. This research has been supported by VISTA (a research cooperation between the Norwegian Academy of Science and Letters and Den norske stats oljeselskap, Statoil) and NAVF (the Norwegian Research Council for Science and the Humanities).  相似文献   

7.
In this paper, we study conservation laws for some partial differential equations. It is shown that interesting conserved quantities arise from multipliers by using homotopy operator that is a powerful algorithmic tool. Furthermore, the invariance properties of the conserved flows with respect to the Lie point symmetry generators are investigated via the symmetry action on the multipliers. Furthermore, the similarity reductions and some exact solutions are provided.  相似文献   

8.
A new general theorem, which does not require the existence of Lagrangians, allows to compute conservation laws for an arbitrary differential equation. This theorem is based on the concept of self-adjoint equations for nonlinear equations. In this paper we show that the Zakharov–Kuznetsov equation is self-adjoint and nonlinearly self-adjoint. This property is used to compute conservation laws corresponding to the symmetries of the equation. In particular the property of the Zakharov–Kuznetsov equation to be self-adjoint and nonlinearly self-adjoint allows us to get more conservation laws.  相似文献   

9.
10.
A class of variable coefficient (1+1)-dimensional nonlinear reaction–diffusion equations of the general form f(x)ut=(g(x)unux)x+h(x)um is investigated. Different kinds of equivalence groups are constructed including ones with transformations which are nonlocal with respect to arbitrary elements. For the class under consideration the complete group classification is performed with respect to convenient equivalence groups (generalized extended and conditional ones) and with respect to the set of all local transformations. Usage of different equivalences and coefficient gauges plays the major role for simple and clear formulation of the final results. The corresponding set of admissible transformations is described exhaustively. Then, using the most direct method, we classify local conservation laws. Some exact solutions are constructed by the classical Lie method.  相似文献   

11.
In the search for solutions to the important partial differential equation due to Black, Scholes and Merton potential symmetries are very useful as new solutions of the equation can be obtained as a result. These potential symmetries require that the equation be written in conserved form, ie. we need to determine conservation laws for the equation. We calculate the conservation laws utilizing the point symmetries of the equation following the method of Kara and Mahomed [A.H. Kara, F.M. Mahomed, The relationship between symmetries and conservation laws, Int. J. Theor. Phys. 39 (2000) 23–40].  相似文献   

12.
The conservation of mass, momentum, energy, helicity, and enstrophy in fluid flow are important because these quantities organize a flow, and characterize change in the flow's structure over time. In turbulent flow, conservation laws remain important in the inertial range of wave numbers, where viscous effects are negligible. It is in the inertial range where energy, helicity (3d), and enstrophy (2d) must be accurately cascaded for a turbulence model to be qualitatively correct. A first and necessary step for an accurate cascade is conservation; however, many turbulent flow simulations are based on turbulence models whose conservation properties are little explored and might be very different from those of the Navier-Stokes equations.We explore conservation laws and approximate conservation laws satisfied by LES turbulence models. For the Leray, Leray deconvolution, Bardina, and Nth order deconvolution models, we give exact or approximate laws for a model mass, momentum, energy, enstrophy and helicity. The possibility of cascades for model quantities is also discussed.  相似文献   

13.
Conservation Laws and Potential Symmetries of Linear Parabolic Equations   总被引:1,自引:0,他引:1  
We carry out an extensive investigation of conservation laws and potential symmetries for the class of linear (1+1)-dimensional second-order parabolic equations. The group classification of this class is revised by employing admissible transformations, the notion of normalized classes of differential equations and the adjoint variational principle. All possible potential conservation laws are described completely. They are in fact exhausted by local conservation laws. For any equation from the above class the characteristic space of local conservation laws is isomorphic to the solution set of the adjoint equation. Effective criteria for the existence of potential symmetries are proposed. Their proofs involve a rather intricate interplay between different representations of potential systems, the notion of a potential equation associated with a tuple of characteristics, prolongation of the equivalence group to the whole potential frame and application of multiple dual Darboux transformations. Based on the tools developed, a preliminary analysis of generalized potential symmetries is carried out and then applied to substantiate our construction of potential systems. The simplest potential symmetries of the linear heat equation, which are associated with single conservation laws, are classified with respect to its point symmetry group. Equations possessing infinite series of potential symmetry algebras are studied in detail.  相似文献   

14.
In this paper we consider a class of evolution equations up to fifth-order containing many arbitrary smooth functions from the point of view of nonlinear self-adjointness. The studied class includes many important equations modeling different phenomena. In particular, some of the considered equations were studied previously by other researchers from the point of view of quasi self-adjointness or strictly self-adjointness. Therefore we find new local conservation laws for these equations invoking the obtained results on nonlinearly self-adjointness and the conservation theorem proposed by Nail Ibragimov.  相似文献   

15.
We show that the Cauchy Problem for a randomly forced, periodic multi-dimensional scalar first-order conservation law with additive or multiplicative noise is well posed: it admits a unique solution, characterized by a kinetic formulation of the problem, which is the limit of the solution of the stochastic parabolic approximation.  相似文献   

16.
Two formulas are introduced to directly obtain new conservation laws for any system of partial differential equations from a known conservation law and admitted symmetries. The first formula maps any conservation law of a given system to the corresponding conservation law of the system obtained through a contact transformation. When the contact transformation is a symmetry of the given system, then the corresponding conservation law is a conservation law of the given system. The second formula checks a priori whether or not the action of a symmetry (continuous or discrete) on a conservation law can yield one or more new conservation laws of the given system. Several examples are considered, including the use of a discrete symmetry to obtain a new conservation law and the use of a continuous symmetry to generate two new conservation laws.  相似文献   

17.
Classifications of symmetries and conservation laws are presented for a variety of physically and analytically interesting wave equations with power nonlinearities in n spatial dimensions: a radial hyperbolic equation, a radial Schrödinger equation and its derivative variant, and two proposed radial generalizations of modified Korteweg-de Vries equations, as well as Hamiltonian variants. The mains results classify all admitted local point symmetries and all admitted local conserved densities depending on up to first order spatial derivatives, including any that exist only for special powers or dimensions. All such cases for which these wave equations admit, in particular, dilational energies or conformal energies and inversion symmetries are determined. In addition, potential systems arising from the classified conservation laws are used to determine nonlocal symmetries and nonlocal conserved quantities admitted by these equations. As illustrative applications, a discussion is given of energy norms, conserved Hs norms, critical powers for blow-up solutions, and one-dimensional optimal symmetry groups for invariant solutions.  相似文献   

18.
In this paper, symmetries and group invariant solutions to the Gardner-KP equation are obtained by using the direct symmetry method. At the same time, we find the corresponding Lie algebra, optimal system, classification and the similarity reductions to the equation, respectively. Our exact solutions generalize the corresponding results obtained by Wazwaz. In addition, the conservation laws of Gardner-KP equation are also given.  相似文献   

19.
Oleg I. Morozov 《Acta Appl Math》2008,101(1-3):231-241
We derive two non-equivalent coverings for the modified Khokhlov–Zabolotskaya equation from Maurer–Cartan forms of its symmetry pseudo-group. Also we find Bäcklund transformations between the obtained covering equations. We apply these results to constructing multi-valued solutions for the Khokhlov–Zabolotskaya equation.  相似文献   

20.
We consider conservation laws for second-order parabolic partial differential equations for one function of three independent variables. An explicit normal form is given for such equations having a nontrivial conservation law. It is shown that any such equation whose space of conservation laws has dimension at least four is locally contact equivalent to a quasi-linear equation. Examples are given of nonlinear equations that have an infinite-dimensional space of conservation laws parameterized (in the sense of Cartan-K?hler) by two arbitrary functions of one variable. Furthermore, it is shown that any equation whose space of conservation laws is larger than this is locally contact equivalent to a linear equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号