首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, some recent concepts and results on self-adjointness and conservation laws are applied to two variable coefficient nonlinear equations of Schrödinger type: the generalized variable coefficient nonlinear Schrödinger (GVCNLS) equation and the cubic-quintic nonlinear Schrödinger (CQNLS) equation with variable coefficients. The two equations are changed to two real systems by a proper transformation. To obtain the formal Lagrangians of the two systems, we discuss their self-adjointness and find that the GVCNLS system is weak self-adjoint and the CQNLS system is quasi self-adjoint. Having performed Lie symmetry analysis for the two systems, we find five nontrivial conservation laws for the GVCNLS system and four nontrivial conservation laws for the CQNLS system by using a general theorem on conservation laws given by Ibragimov.  相似文献   

2.
In this paper, we derive the next hierarchy of the mixed derivative nonlinear Schrödinger (MDNLS) equation. Considering the Wadati–Konno–Ichikawa eigen value problem, the Lax Pair for the above equation is explicitly constructed. Obtained results are in agreement with the results derived through other methods in the recent past. We also briefly discuss the construction of Bäcklund transformation.  相似文献   

3.
4.
In this paper, we provide a simple method to generate higher order position solutions and rogue wave solutions for the derivative nonlinear Schrödinger equation. The formulae of these higher order solutions are given in terms of determinants. The dynamics and structures of solutions generated by this method are studied.  相似文献   

5.
We show that the superposition principle applies to coupled nonlinear Schrödinger equations with cubic nonlinearity where exact solutions may be obtained as a linear combination of other exact solutions. This is possible due to the cancelation of cross terms in the nonlinear coupling. First, we show that a composite solution, which is a linear combination of the two components of a seed solution, is another solution to the same coupled nonlinear Schrödinger equation. Then, we show that a linear combination of two composite solutions is also a solution to the same equation. With emphasis on the case of Manakov system of two-coupled nonlinear Schrödinger equations, the superposition is shown to be equivalent to a rotation operator in a two-dimensional function space with components of the seed solution being its coordinates. Repeated application of the rotation operator, starting with a specific seed solution, generates a series of composite solutions, which may be represented by a generalized solution that defines a family of composite solutions. Applying the rotation operator to almost all known exact seed solutions of the Manakov system, we obtain for each seed solution the corresponding family of composite solutions. Composite solutions turn out, in general, to possess interesting features that do not exist in the seed solution. Using symmetry reductions, we show that the method applies also to systems of N-coupled nonlinear Schrödinger equations. Specific examples for the three-coupled nonlinear Schrödinger equation are given.  相似文献   

6.
7.
In this article, a compact finite difference scheme for the coupled nonlinear Schrödinger equations is studied. The scheme is proved to conserve the original conservative properties. Unconditional stability and convergence in maximum norm with order O(τ2 + h4) are also proved by the discrete energy method. Finally, numerical results are provided to verify the theoretical analysis.  相似文献   

8.
Annali di Matematica Pura ed Applicata (1923 -) - We study the following system of nonlinear Schrödinger equations: $$\begin{aligned} \left\{ \begin{array}{l} -\varepsilon ^2\Delta u +a(x) u =...  相似文献   

9.
This paper is devoted to study a class of systems of nonlinear Schrödinger equations: \(\left\{\begin{array}{rcl} -\Delta u+u-u^{3}=\epsilon v, \\ -\Delta v+v-v^{3}=\epsilon u, \end{array}\right.\) in \(\mathbb{R}^{n}\) with dimension n = 1,2,3. Our main result states that if \(\mathcal{P}\) denotes a regular polytope centered at the origin of \(\mathbb{R}^{n}\) such that its side is greater than the radius, then there exists a solution with one multi-bump component having bumps located near the vertices of \(\xi\mathcal{P}\), where \({\xi\sim \log(1/\varepsilon)}\), while the other component has one negative peak.  相似文献   

10.
We consider the problem $$\left\{\begin{array}{ll}-\Delta u - g(u) = \lambda u,\\ u \in H^1(\mathbb{R}^N), \int_{\mathbb{R}^N} u^2 = 1, \lambda \in \mathbb{R},\end{array}\right.$$ in dimension N ≥ 2. Here g is a superlinear, subcritical, possibly nonhomogeneous, odd nonlinearity. We deal with the case where the associated functional is not bounded below on the L 2-unit sphere, and we show the existence of infinitely many solutions.  相似文献   

11.
We study the nonlinear Schrödinger equation in \(\mathbb {R}^n\) without making any periodicity assumptions on the potential or on the nonlinear term. This prevents us from using concentration compactness methods. Our assumptions are such that the potential does not change the essential spectrum of the linear operator. This results in \([0, \infty )\) being the absolutely continuous part of the spectrum. If there are an infinite number of negative eigenvalues, they will converge to 0. In each case we obtain nontrivial solutions. We also obtain least energy solutions.  相似文献   

12.
We prove the existence of global classical solutions to the initial value problem for the nonlinear Schrödinger equation, iut–u+q(|u|2)u=0 in iut - u + (|u|2)u = in (t, x)xn for 6n11.  相似文献   

13.
We study the global in time existence of small classical solutions to the nonlinear Schrödinger equation with quadratic interactions of derivative type in two space dimensions $\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&;t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&;x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)$ where the quadratic nonlinearity has the form ${\mathcal{N}( \nabla u,\nabla v) =\sum_{k,l=1,2}\lambda _{kl} (\partial _{k}u) ( \partial _{l}v) }We study the global in time existence of small classical solutions to the nonlinear Schr?dinger equation with quadratic interactions of derivative type in two space dimensions
$\left\{{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \right.\quad\quad\quad\quad\quad\quad (0.1)$\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)  相似文献   

14.
In this paper, three numerical schemes with high accuracy for the coupled Schrodinger equations are studied. The conserwtive properties of the schemes are obtained and the plane wave solution is analysised. The split step Runge-Kutta scheme is conditionally stable by linearized analyzed. The split step compact scheme and the split step spectral method are unconditionally stable. The trunction error of the schemes are discussed. The fusion of two solitions colliding with different β is shown in the figures. The numerical experments demonstrate that our algorithms are effective and reliable.  相似文献   

15.
We study the coupled nonlinear Schrodinger equation with variable coefficients (VCNLS), which can be used to describe the interaction among the modes in nonlinear optics and Bose–Einstein condensation. By constructing an explicit transformation, which maps VCNLS to the classical coupled nonlinear Schrödinger equations (CNLS), we obtain Bright–Dark and Bright–Bright solitons for VCNLS. Furthermore, the optical super-lattice potentials (or periodic potentials) and hyperbolic cosine potentials with parameters are designed, which are two kinds of important potentials in physics. This method can be used to design a large variety of external potentials in VCNLS, which could be meaningful for manipulating solitons experimentally.  相似文献   

16.
17.
A Hamiltonian system of incoherently coupled nonlinear Schrödinger (NLS) equations is considered in the context of physical experiments in photorefractive crystals and Bose-Einstein condensates. Due to the incoherent coupling, the Hamiltonian system has a group of various symmetries that include symmetries with respect to gauge transformations and polarization rotations. We show that the group of rotational symmetries generates a large family of vortex solutions that generalize scalar vortices, vortex pairs with either double or hidden charge, and coupled states between solitons and vortices. Novel families of vortices with different frequencies and vortices with different charges at the same component are constructed and their linearized stability problem is block-diagonalized for numerical analysis of unstable eigenvalues.  相似文献   

18.
J. Shu  J. Zhang 《Mathematical Notes》2009,86(5-6):650-654
This paper discusses the weakly coupled nonlinear Schrödinger equations in the supercritical case. With the best constant of the Gagliardo-Nirenberg inequality, we derive a sufficient condition for the global existence of solutions; this condition is expressed in terms of stationary solutions (nonlinear ground state).  相似文献   

19.
It is proved that the conserved polynomials of the nonlinear Schrödinger equation have a vanishing residue property analogous to those now known to characterize the Korteweg-de Vries, Modified Korteweg-de Vries and Sine-Gordon hierarchies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号