首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complexes of formulation [Cu(Tp(Ph))(L)](ClO(4)) (1-4), where Tp(Ph) is anionic tris(3-phenylpyrazolyl)borate and L is N,N-donor heterocyclic base, viz. 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyridoquinoxaline (dpq, 3), and dipyridophenazine (dppz, 4), are prepared from a reaction of copper(II) acetate.hydrate with KTp(Ph) and L in CH(2)Cl(2) and isolated as perchlorate salts. The complexes are characterized by analytical, structural, and spectral methods. The crystal structures of complexes 1-4 show the presence of discrete cationic complexes having the metal, Tp(Ph), and L in a 1:1:1 ratio and a noncoordinating perchlorate anion. The complexes have a square-pyramidal 4 + 1 coordination geometry in which two nitrogens of L and two nitrogens of the Tp(Ph) ligand occupy the basal plane and one nitrogen of Tp(Ph) binds at the axial site. Complexes 3 and 4 display distortion from the square-pyramidal geometry. The Cu-N distances for the equatorial and axial positions are approximately 2.0 and 2.2 A, respectively. The phenyl groups of Tp(Ph) form a bowl-shaped structure that encloses the [CuL] moiety. The steric encumbrance is greater for the bpy and phen ligands compared to that for dpq and dppz. The one-electron paramagnetic complexes (mu approximately equal to 1.8 mu(B)) exhibit axial EPR spectra in CH(2)Cl(2) glass at 77 K giving g(parallel) and g(perpendicular) values of approximately 2.18 (A(parallel) = 128 G) and approximately 2.07. The data suggest a [d(x(2)-y(2))](1) ground state. The complexes are redox-active and display a quasireversible cyclic voltammetric response for the Cu(II)/Cu(I) couple near 0.0 V versus SCE with an i(pc)/i(pa) ratio of unity in CH(2)Cl(2) or DMF-0.1 M TBAP. The E(1/2) values of the couple vary in the order 4 > 3 > 2 > 1. A profound effect of steric encumbrance caused by the Tp(Ph) ligand is observed in the reactivity of 1-4 with the calf thymus (CT) and supercoiled (SC) DNA. Complexes 2-4 show similar binding to CT DNA. The propensity for the SC DNA cleavage varies as 4 > 3 > 2. The bpy complex does not show any significant binding or cleavage of DNA. Mechanistic investigations using distamycin reveal minor groove binding for 2 and 3 and a major groove binding for 4. The scission reactions that are found to be inhibited by hydroxyl radical scavenger DMSO are likely to proceed through sugar hydrogen abstraction pathways.  相似文献   

2.
Gold derivatives [Au(Tpx)(PR3)](Tpx = Tp, hydrotris(pyrazol-1-yl)borate or Tp*, hydrotris(3,5-dimethylpyrazol-1-yl)borate; R = Ph or tBu) and [Au(pzTp)(PR3)x](pzTp = tetrakis(pyrazol-1-yl)borate, x = 1 or 2, R = Ph or tBu) have been synthesised and characterized both in solution (1H- and 31P[1H]-NMR) and in the solid state (IR, single crystal X-ray structure analysis, 31P CPMAS). 31P [1H] NMR solution data suggest greater stability of the tetrakis(pyrazolyl)borate relative to those of tris(pyrazolyl)borate. All compounds are fluxional at room temperature. In order to compare [Au(Tp*)(PPh3)] with analogous coinage metal adducts we have synthesized and structurally characterized [Cu(Tp*)(PPh3)] x PPh3 and [Ag(Tp*)(PPh3)] x 2MeCN. In [Au(Tp*)(PPh3)] the gold atom adopts a distorted tetrahedral geometry with 2.181(5) and 2.37(2) angstroms (cf. 2.166(6), 2.098(1) in [Cu(Tp*)PPh3], 2.156(2), 2.075(7) in [Cu(Tp*)(PPh3)] x PPh3; and in [Ag(Tp*)PPh3] x MeCN 2.347(12), 2.35(5) angstroms). There are three independent [Au(Tp*)(PPh3)] molecules in the asymmetric unit of the structure with their PAu...B axes lying on the cell diagonal of a cubic P213 cell, two with the same chirality aligned opposed in direction to the third which is of opposite chirality. A number of Cu, Ag and Au complexes containing scorpionate ligands have also been investigated by 31P cross-polarization magic-angle-spinning (CPMAS) NMR spectroscopy.  相似文献   

3.
Ternary 3d -metal complexes [M(Tp (Ph))(B)](ClO 4) ( 1- 8), where M is Co(II), Ni(II), Cu(II) and Zn(II), Tp (Ph) is anionic tris(3-phenylpyrazolyl)borate, and B is N,N-donor heterocyclic base, namely, 1,10-phenanthroline (phen, 1- 4) and dipyrido[3,2- d:2',3'- f]quinoxaline (dpq, 5- 8), were prepared from a reaction of the perchlorate salt of the metal with KTp (Ph) and B in CH 2Cl 2. The complexes were characterized by various physicochemical methods. 4- 6 and 8 were structurally characterized by single-crystal X-ray crystallography. The crystal structures of the complexes show the presence of discrete cationic complexes having a square-pyramidal (4 + 1) coordination geometry in which two nitrogen atoms of the phenanthroline base (B) and two nitrogen atoms of the Tp (Ph) ligand occupy the basal plane and one nitrogen of the Tp (Ph) ligand binds at the axial site. The phenyl groups of the Tp (Ph) form a bowl-shaped structure that essentially encloses the {M(phen/dpq)} moiety. DNA-binding studies were carried out using various spectral techniques and from viscosity measurements. The complexes show moderate binding propensity to calf thymus DNA at the minor groove, giving binding constant values ( K b) of approximately 10 (4) M (-1). The complexes exhibit poor DNA-cleavage activity in the dark in the presence of 3-mercaptopropionic acid (MPA) or hydrogen peroxide (H 2O 2). The photoinduced DNA-cleavage activity of the complexes was investigated using UV-A radiation of 365 nm and visible light of two different wavelengths with a tunable multicolor Ar-Kr mixed gas ion laser source. The dpq complexes show efficient photoinduced DNA-cleavage activity via a metal-assisted photoexcitation process involving the formation of singlet oxygen as the cleavage active species in a type-II pathway. The paramagnetic d (7)-Co(II)-dpq and d (9)-Cu(II)-dpq complexes exhibit efficient DNA-cleavage activity in visible light. The paramagnetic d (8)-Ni(II)-dpq complex displays only minor DNA-cleavage activity in visible light. Diamagnetic d (10)-Zn(II)-dpq complex shows only UV-A light-induced DNA cleavage but no apparent DNA-cleavage activity in visible light. Steric protection of the photoactive quinoxaline moiety of the dpq ligand inside the hydrophobic {M(Tp (Ph))} molecular bowl has a positive effect on the photoinduced DNA-cleavage activity.  相似文献   

4.
A new cyanoscorpionate ligand, hydrotris(3- t-butyl-4-cyanopyrazolyl)borate (Tp ( t-Bu,4CN )) is reported. Both Tp ( t-Bu,4CN ) and hydrotris(4-cyano-3-phenylpyrazolyl)borate (Tp (Ph,4CN)) form one-dimensional coordination polymers with Cu(I). The polymeric chains align to form channels which, in the case of Tp ( t-Bu,4CN ), can encapsulate solvent molecules, as evidenced by the characterization of one such polymer with encapsulated acetonitrile molecules.  相似文献   

5.
The structures adopted by a range of poly(pyrazolyl)borate complexes [ML2Tp(x)] [M = Rh, Ir; L2 = diene; Tp(x) = Bp' {dihydrobis(3,5-dimethylpyrazolyl)borate}, Tp' {hydrotris(3,5-dimethylpyrazolyl)borate}, Tp {hydrotris(pyrazolyl)borate}, B(pz)4 {tetrakis(pyrazolyl)borate}] have been investigated. Low steric hindrance between ligands in [Rh(eta-nbd)Tp] (nbd = norbornadiene), [Rh(eta-cod)Tp] (cod = cycloocta-1,5-diene) and [Rh(eta-nbd)Tp'] results in K3 coordination of the pyrazolylborate but [M(eta-cod)Tp'] (M = Rh, Ir) are kappa2 coordinated with the free pyrazolyl ring positioned above and approximately parallel to the square plane about the metal. All but the most sterically hindered Tp(x) complexes undergo fast exchange of the coordinated and uncoordinated pyrazolyl rings on the NMR spectroscopic timescale. For [Rh(eta-cod){B(pz)4}], [Rh(eta-dmbd)Tp'] (dmbd = 2,3-dimethylbuta-1,3-diene) and [Rh(eta-cod)Tp(Ph)] {Tp(Ph) = hydrotris(3-phenylpyrazolyl)borate} the fluxional process is slowed at low temperatures so that inequivalent pyrazolyl rings are observed. The bonding modes of the Tp' ligand (but not of other pyrazolylborate ligands) can be determined by 11B NMR and IR spectroscopy. The 11B chemical shifts (for a series of Tp' complexes) show the general pattern, kappa3 < -7.5 ppm < kappa2 and the nu(BH) stretch kappa3 > 2500 cm(-1) > kappa2. The electrochemical behaviour of the pyrazolylborate complexes is related to the degree of structural change which occurs on electron transfer. One-electron oxidation of complexes with Tp', Tp and B(pz)4 ligands is generally reversible although that of [Ir(etacod)Tp] is only reversible at higher scan rates and that of [Ir(eta-cod){B(pz)4}] is irreversible. Of the complexes with the more sterically hindered Tp(Ph) ligand, only [Rh(eta-nbd)Tp(Ph)] shows any degree of reversible oxidation. The ESR spectra of a range of Rh(II) complexes show coupling to both 14N and 103Rh nuclei in most cases but what appears to be coupling to rhodium and one hydrogen atom, possibly a hydride ligand, for the oxidation product of [Rh(eta-nbd)Tp(Ph)].  相似文献   

6.
The synthesis and reactivity of [Tp*Zr(CH2Ph)2][B(C6F5)4] (2, Tp* = HB(3,5-Me2pz)3, pz = pyrazolyl) have been explored to probe the possible role of Tp'MR2+ species in group 4 metal Tp'MCl3/MAO olefin polymerization catalysts (Tp' = generic tris(pyrazolyl)borate). The reaction of Tp*Zr(CH2Ph)3 (1) with [Ph3C][B(C6F5)4] in CD2Cl2 at -60 degrees C yields 2. 2 rearranges rapidly to [{(PhCH2)(H)B(mu-Me2pz)2}Zr(eta2-Me2pz)(CH2Ph)][B(C6F5)4] (3) at 0 degrees C. Both 2 and 3 are highly active for ethylene polymerization and alkyne insertion. Reaction of 2 with excess 2-butyne yields the double insertion product [Tp*Zr(CH2Ph)(CMe=CMeCMe=CMeCH2Ph)][B(C6F5)4] (4). Reaction of 3 with excess 2-butyne yields [{(PhCH2)(H)B(mu-Me2pz)2}Zr(Cp*)(eta2-Me2pz)][B(C6F5)4] (6, Cp* = C5Me5) via three successive 2-butyne insertions, intramolecular insertion, chain walking, and beta-Cp* elimination.  相似文献   

7.
The tetrahedral cobalt(II) complex [(Tp(Ph,Me))CoCl] (Tp(Ph,Me) = hydrotris(3,5-phenylmethylpyrazolyl)borate) was combined with several hydroxypyridinone, hydroxypyridinethione, pyrone, and thiopyrone ligands to form the corresponding [(Tp(Ph,Me))Co(L)] complexes. X-ray crystal structures of these complexes were obtained to determine the mode of binding for each ligand L. The structures show that the [(Tp(Ph,Me))Co(L)] complexes are pentacoordinate complexes, with a general tendency toward square pyramidal geometry. The electronic, EPR, and paramagnetic NMR spectroscopy of the [(Tp(Ph,Me))Co(L)] complexes have been examined. The frozen-solution EPR spectra are indicative of pentacoordination in frozen solution, while the NMR indicates some dynamics in ligand binding. The findings presented here suggest that [(Tp(Ph,Me))Co(L)] complexes can be used as spectroscopic references for investigating the mode of inhibitor binding in metalloproteinases of medicinal interest. Potential limitations when using cobalt(II) model complexes are also discussed.  相似文献   

8.
New homoscorpionate ligands containing a 3-benzyl substituent, hydrotris(3-benzyl-5-methylpyrazol-1-yl)borate, Tp(Bn,Me), and hydrotris(3-benzyl-4-phenylpyrazol-1-yl)borate, Tp(Bn,4Ph), have been synthesized, and the dynamic behavior of a number of metal complexes was studied by NMR. Structures of the complexes Tl[Tp(Bn,Me)], 1, Tl[Tp(Bn,4Ph)], 2, Co[Tp(Bn,Me)][Tp(Np)], 3, Mo[Tp(Bn,Me)](CO)(2)NO, 4, Co[Tp(Bn,4Ph)][Tp], 5, and Mo[Tp(Bn,Me)](CO)(2)(eta(3)-methallyl), 6, were determined by X-ray crystallography. In the Tp(Bn,Me) ligand, the benzyl group is freely rotating and provides less steric hindrance to the coordinated metal than a neopentyl group, but steric hindrance is increased in the Tp(Bn,4Ph) ligand, where the rotation of the benzyl substituent is restricted by the 4-phenyl substituent.  相似文献   

9.
A series of new cobalt(II) and nickel(II) tris(3,5-diphenylpyrazolyl)borate (Tp(Ph2)) dithiocarbamate complexes [Tp(Ph2)M(dtc)] (M = Co, dtc = S?CNEt? 1, S?CNBz? 2 and S?CN(CH?)? 3; M = Ni, dtc = S?CNEt? 4, S?CNBz? 5 and S?CN(CH?)? 6) have been prepared by the reaction of [Tp(Ph2)MBr] with Nadtc in CH?Cl?. IR spectroscopy indicates that the Tp(Ph2) ligand is κ3 coordinated while the dithiocarbamate ligand is κ2 coordinated. 1H NMR and UV-Vis spectroscopy are consistent with high spin, five-coordinate metal centres. X-ray crystallographic studies of 1, 3 and 6 confirm the κ3 coordination of the Tp(Ph2) ligand and reveal an intermediate five-coordinate geometry with an asymmetrically coordinated dithiocarbamate ligand. Electrochemical studies of 1-6 reveal a metal centred reversible one-electron oxidation to M(III). Attempted oxidation of [Tp(Ph2)Co(dtc)] with [FeCpCp(COMe)]BF? yields [Co(dtc)?], Hpz(Ph2) and a further product which may be [Tp(Ph2)CoBp(Ph2)]. DFT calculations indicate that the low redox potentials in these complexes result from a strongly antibonding M-S σ* HOMO.  相似文献   

10.
A rare uranium(III) alkyl complex, Tp*(2)U(CH(2)Ph) (2) (Tp* = hydrotris(3,5-dimethylpyrazolyl)borate), was synthesized by salt metathesis from Tp*(2)UI (1) and KCH(2)Ph and fully characterized using (1)H NMR, infrared, and electronic absorption spectroscopies as well as X-ray crystallography. This complex has a uranium-carbon distance of 2.57(2) ?, which is comparable to other uranium alkyls reported. Treating this compound with either carbon dioxide or carbon disulfide results in insertion into the uranium-carbon bond to generate Tp*(2)U(κ(2)-O(2)CCH(2)Ph) (3) and Tp*(2)U(SC(S)CH(2)Ph) (4), respectively. These species, characterized spectroscopically and by X-ray crystallography, feature new carboxylate and dithiocarboxylate ligands. Analysis by electronic absorption spectroscopy supports the trivalent oxidation state of the uranium center in both of these derivatives. Addition of trimethylsilylhalides (Me(3)SiX; X = Cl, I) to 3 results in the release of the free silyl ester, Me(3)SiOC(O)CH(2)Ph, forming the initial uranium monohalide species, Tp*(2)UX, which can then be used over multiple cycles for the functionalization of carbon dioxide.  相似文献   

11.
The bis(pyridyl)-substituted TTF derivative, 2,6(7)-bis(4-pyridyl)-1,4,5,8-tetrathiafulvalene (TTF(py)(2)), and an inorganic analogue, [Ni(4-pedt)(2)] (4-pedt = 1-(pyridin-4-yl)ethylene-1,2-dithiolate), were used as bridging ligands to construct two multinuclear complexes {Co(II)(2)(Tp(Ph2))(2)(OAc)(2)[TTF(py)(2)]} (1, Tp(Ph2) = hydridotri(3,5-diphenylpyrazol-1-yl)borate) and {Co(II)(2)(Tp(Ph2))(2)(OAc)(2)[Ni(4-pedt)(2)]} (2), and two 1D zigzag chain complexes, {[M(II)(tta)(2)][TTF(py)(2)]}(n) (M = Cu for 3, and Mn for 4; tta = thenoyltrifluoroacetonate). X-Ray structural studies indicate that complexes 1 and 2 are very similar as a result of the isolobal analogy between TTF(py)(2) and [Ni(4-pedt)(2)], whereas complexes 3 and 4 are isostructural. The absorption spectra, electrochemical and magnetic properties for these new complexes have been studied. The results show that the interactions between the paramagnetic ions are weak owing to the large separation of the bridging ligands of TTFs and the inorganic analogue.  相似文献   

12.
Mononuclear iron(II) alpha-keto carboxylate and carboxylate compounds of the sterically hindered tridentate face-capping ligand Tp(Ph2) (Tp(Ph2) = hydrotris(3,5-diphenylpyrazol-1-yl)borate) were prepared as models for the active sites of nonheme iron oxygenases. The structures of an aliphatic alpha-keto carboxylate complex, [Fe(II)(Tp(Ph2))(O(2)CC(O)CH(3))], and the carboxylate complexes [Fe(II)(Tp(Ph2))(OBz)] and [Fe(II)(Tp(Ph2))(OAc)(3,5-Ph(2)pzH)] were determined by single-crystal X-ray diffraction, all of which have five-coordinate iron centers. Both the alpha-keto carboxylate and the carboxylate compounds react with dioxygen resulting in the hydroxylation of a single ortho phenyl position of the Tp(Ph2) ligand. The oxygenation products were characterized spectroscopically, and the structure of the octahedral iron(III) phenolate product [Fe(III)(Tp(Ph2))(OAc)(3,5-Ph(2)pzH)] was established by X-ray diffraction. The reaction of the alpha-keto carboxylate model compounds with oxygen to produce the phenolate product occurs with concomitant oxidative decarboxylation of the alpha-keto acid. Isotope labeling studies show that (18)O(2) ends up in the Tp(Ph2) phenolate oxygen and the carboxylate derived from the alpha-keto acid. The isotope incorporation mirrors the dioxygenase nature of the enzymatic systems. Parallel studies on the carboxylate complexes demonstrate that the oxygen in the hydroxylated ligand is also derived from molecular oxygen. The oxygenation of the benzoylformate complex is demonstrated to be first order in metal complex and dioxygen, with activation parameters DeltaH++ = 25 +/- 2 kJ mol(-1) and DeltaS++ = -179 +/- 6 J mol(-1) K(-1). The rate of appearance of the iron(III) phenolate product is sensitive to the nature of the substituent on the benzoylformate ligand, exhibiting a Hammett rho value of +1.3 indicative of a nucleophilic mechanism. The proposed reaction mechanism involves dioxygen binding to produce an iron(III) superoxide species, nucleophilic attack of the superoxide at the alpha-keto functionality, and oxidative decarboxylation of the adduct to afford the oxidizing species that attacks the Tp(Ph2) phenyl ring. Interestingly, the alpha-keto carboxylate complexes react 2 orders of magnitude faster than the carboxylate complexes, thus emphasizing the key role that the alpha-keto functionality plays in oxygen activation by alpha-keto acid-dependent iron enzymes.  相似文献   

13.
Yi W  Zhang J  Li M  Chen Z  Zhou X 《Inorganic chemistry》2011,50(22):11813-11824
The structurally characterized Tp(Me2)-supported rare earth metal monoalkyl complex (Tp(Me2))CpYCH(2)Ph(THF) (1) was synthesized via the salt-metathesis reaction of (Tp(Me2))CpYCl(THF) with KCH(2)Ph in THF at room temperature. Treatment of 1 with 1 equiv of PhC≡CH under the same conditions afforded the corresponding alkynyl complex (Tp(Me2))CpYC≡CPh(THF) (2). Complex 1 exhibits high activity toward carbodiimides, isocyanate, isothiocyanate, and CS(2); treatment of 1 with such substrates led to the formation of a series of the corresponding Y-C(benzyl) σ-bond insertion products (Tp(Me2))CpY[(RN)(2)CCH(2)Ph] (R = (i)Pr(3a), Cy(3b), 2,6-(i)Pr-C(6)H(3)(3c)), (Tp(Me2))CpY[SC(CH(2)Ph)NPh] (4), (Tp(Me2))CpY[OC(CH(2)Ph)NPh] (5), and (Tp(Me2))CpY(S(2)CCH(2)Ph) (6) in 40-70% isolated yields. Carbodiimides and isothiocyanate can also insert into the Y-C(alkynyl) σ bond of 2 to yield complexes (Tp(Me2))CpY[(RN)(2)CC≡CPh] (R = (i)Pr(7a), Cy(7b)) and (Tp(Me2))CpY[SC(C≡CPh)NPh] (9). Further investigation results indicated that 1 can effectively catalyze the cross-coupling reactions of phenylacetylene with carbodiimides. However, treatment of o-allylaniline with a catalytic amount of 1 gave only the benzyl abstraction product (Tp(Me2))CpY(NHC(6)H(4)CH(2)CH═CH(2)-o)(THF) (10), without observation of the expected organic hydroamination/cyclization product. All of these new complexes were characterized by elemental analysis and spectroscopic properties, and their solid-state structures were also confirmed by single-crystal X-ray diffraction analysis.  相似文献   

14.
Synthesis and isolation of the Cu(I) amido complex (dtbpe)Cu(NHPh) (dtbpe = 1,2-bis(di-tert-butylphosphino)ethane) is accomplished upon reaction of [(dtbpe)Cu(mu-Cl)](2) with LiNHPh. The anilido complex has been fully characterized by IR spectroscopy and multinuclear NMR spectroscopy as well as by single-crystal X-ray diffraction study. Salient features of the solid-state structure include an amido orientation that allows pi-interaction of the nitrogen-based lone pair with both the empty copper p-orbital and the pi-system of the phenyl substituent. A solid-state X-ray diffraction study of [(dtbpe)Cu(NH(2)Ph)][BF(4)] has allowed a direct comparison of the structural features upon conversion of the amine ligand to an amido. The reactivity of the amido ligand of (dtbpe)Cu(NHPh) is consistent with nucleophilic character. For example, the formation of Ph(3)CNHPh is observed upon treatment with [Ph(3)C][BF(4)], and reaction at room temperature with EtX (X = Br or I) yields N-ethylaniline. The reactivity of (dtbpe)Cu(NHPh) is compared to that of the octahedral and d(6) complex TpRu(PMe(3))(2)(NHPh) (Tp = hydridotris(pyrazolyl)borate).  相似文献   

15.
The new ligand, hydrotris[3-(diphenylmethyl)pyrazol-1-yl]borate, Tp(CHPh2), has been synthesized and its coordination chemistry was compared with that of the analogous Tp(iPr). The new ligand was converted to a variety of complexes, such as M[Tp(CHPh2)]X (M = Co, Ni, Zn; X = Cl, NCO, NCS), Pd[Tp(CHPh2)][eta3-methallyl], Co[Tp(CHPh2)](acac), and Co[Tp(CHPh2)](scorpionate ligand). Compounds Tl[Tp(CHPh2)], 1, Co[Tp(CHPh2)]Cl, 2, Co[Tp(CHPh2)](NCS)(DMF), 3, Ni[Tp(CHPh2)](NCS)(DMF)2, 4, Co[Tp(CHPh2)](acac), 5, Co[Tp(CHPh2)][Ph2Bp], 6, Co[Tp(CHPh2)][Bp(Ph)], 7, Co[Tp(CHPh2)][Tp], 8, and (Ni[Tp(CHPh2)])2[C2O4](H2O)2, 9, were structurally characterized.  相似文献   

16.
The tetrahedral zinc complex [(Tp(Ph,Me))ZnOH] (Tp(Ph,Me) = hydrotris(3,5-phenylmethylpyrazolyl)borate) was combined with 2-thenylmercaptan, ethyl 4,4,4-trifluoroacetoacetate, salicylic acid, salicylamide, thiosalicylic acid, thiosalicylamide, methyl salicylate, methyl thiosalicyliate, and 2-hydroxyacetophenone to form the corresponding [(Tp(Ph,Me))Zn(ZBG)] complexes (ZBG = zinc-binding group). X-ray crystal structures of these complexes were obtained to determine the mode of binding for each ZBG, several of which had been previously studied with SAR by NMR (structure-activity relationship by nuclear magnetic resonance) as potential ligands for use in matrix metalloproteinase inhibitors. The [(Tp(Ph,Me))Zn(ZBG)] complexes show that hydrogen bonding and donor atom acidity have a pronounced effect on the mode of binding for this series of ligands. The results of these studies give valuable insight into how ligand protonation state and intramolecular hydrogen bonds can influence the coordination mode of metal-binding proteinase inhibitors. The findings here suggest that model-based approaches can be used to augment drug discovery methods applied to metalloproteins and can aid second-generation drug design.  相似文献   

17.
One mononuclear iron(II)-phenylpyruvate complex [Tp(Ph2)Fe(II)(PPH)] (1) of the tridentate face-capping Tp(Ph2) ligand and two dinuclear iron(II)-phenylpyruvate enolate complexes [(6-Me3-TPA)2Fe(II)2(PP)]2+ (2) and [(6-Me3-TPA)2Fe(II)2(2-NO2-PP)]2+ (3) of the tetradentate 6-Me3-TPA ligand are reported to demonstrate two different binding modes of phenylpyruvate to the iron(II) centers. Phenylpyruvate binds in a kappa2-(O,O) manner to the mononuclear Fe(II)(Tp(Ph2)) center of 1 but bridges in a kappa3-(O,O,O) fashion to the two Fe(II)(6-Me3-TPA) centers of 2 and 3. Mononuclear complex 1 reacts with O2 to undergo oxidative decarboxylation and ortho-hydroxylation of one of the aromatic rings of the Tp(Ph2) ligand. In contrast, dinuclear complexes 2 and 3 react with O2 to undergo oxidative cleavage of the C2-C3 bond of phenylpyruvate.  相似文献   

18.
To understand the coordination chemistry of zinc-binding groups (ZBGs) with catalytic zinc centers in matrix metalloproteinases (MMPs) and disintegrin metalloproteases (ADAMs), we have undertaken a model compound study centered around tris(3,5-methylphenypyrazolyl)hydroboratozinc(II) hydroxide and aqua complexes ([Tp(Ph,Me)ZnOH] and [Tp(Ph,Me)Zn(OH2)]+, respectively, wherein (Tp(Ph,Me))- = hydrotris(3,5-methylphenylpyrazolyl)borate) and the products of their reactions with a class of chelating Schiff's base ligands. The results show that the protic ligands, HL (HL = N-propyl-1-(5-methyl-2-imidazolyl)methanimine (5-Me-4-ImHPr), N-propyl-1-(4-imidazolyl)methanimine (4-ImHPr), and N-propyl-1-(2-imidazolyl)methanimine (2-ImHPr)), react with [Tp(Ph,Me)ZnOH] and give products with the general formula [Tp(Ph,Me)ZnL], whereas reactions with neutral aprotic ligands, L' (L' = N-propyl-1-(1-methyl-2-imidazolyl)methanimine (1-Me-2-ImPr) and N-propyl-1-(2-thiazolyl)methanimine (2-TaPr)), yield the corresponding [Tp(Ph,Me)ZnL]+ complexes. Although the phenol group of N-propyl-1-(2-hydroxyphenyl)methanimine (2-HOPhPr) is protic, this ligand forms a cationic four-coordinate complex containing an intraligand hydrogen bond. The solid-state structures of these complexes were determined by single-crystal X-ray diffraction, and the results showed that the protic ligands form five-membered chelates of the Zn2+ ion. All ligands displace the aqua ligand in [Tp(Ph,Me)Zn(OH2)]+ to yield complexes having 1H NMR spectra consistent with the formation of five membered chelates. The 1H resonance frequencies of the chelating ligands typically shift upfield upon coordination to the zinc center, due to ring current effects from the pendant phenyl groups of the (Tp(Ph,Me))- ligand. Thus, the 1H NMR spectra provide a convenient and sensitive means of tracking the solution reactions by titration. The resulting series of spectra showed that the stabilities of the chelates in solution depend on the propensity of the ligands to deprotonate upon chelation of the zinc center. The behaviors of these bidentate ZBGs provide insight into the structural and electronic factors that contribute to the stabilities of inhibited MMPs and ADAMs and suggest that the proton acidity of the coordinated ZBG may be a crucial criterion for inhibitor design.  相似文献   

19.
Reaction of the new cyanoscorpionate ligand, hydrotris(4-cyano-3-phenyl)pyrazolylborate (Tp(Ph),(4CN)) with Co(II), Mn(II), and Fe(II) unexpectedly results in the isolation only of crystals containing sandwich complexes in which the ligands have been isomerized to produce the heterocyanoscorpionate hydrobis(4-cyano-3-phenylpyrazolyl)(4-cyano-5-phenylpyrazolyl)borate (Tp(Ph),(4CN*)). The three complexes have been characterized crystallographically and are isostructural, with each ligand acting in a tridentate manner toward the metal. The isomerization of the ligand appears to be more facile than that of the analogous non-cyano ligand, Tp(Ph), with which crystals of the unisomerized sandwich compound have been isolated for Mn(II) and Fe(II).  相似文献   

20.
Two anionic tridentate N,O,N' chelators, [pz(Ph)B(mu-pz)(mu-O)B(Ph)pz](-) (3(-)) and [pz(Ph)(Ph)B(mu-pz)(mu-O)B(Ph)pz(Ph)](-) (4(-)), as well as the corresponding complexes [Fe(3)(py)Cl], [Fe(3)Cl(2)] and [Cu(3)Cl], have been synthesised and structurally characterised by X-ray crystallography (pz: pyrazolyl, pz(Ph): 3-phenylpyrazolyl, py: pyridine). Since our synthesis approach takes advantage of the highly modular pyrazolylborate chemistry, inexpensive and relatively resistant N,O,N' ligands of varying steric demand are readily accessible. The complexes [Fe(3)(py)Cl] and [Fe(3)Cl(2)] possess a distorted trigonal-bipyramidal configuration with the pyrazolyl rings occupying equatorial positions and the oxygen donor being located at an apical position. The complex [Cu(3)Cl] crystallises as chloro-bridged dimers featuring Cu(II) ions with ligand environments that are intermediate between a square-planar and a trigonal-bipyramidal geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号