首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we generalize the IR spectroscopic properties of M3+VO4 (M=Fe, In) orthovanadate and Fe2V4O13 films. The films were prepared using the sol-gel synthesis route from M3+ nitrates and vanadium oxoisopropoxide. The vibrational bands in the IR absorbance spectra of the films are classified in terms of terminal V-O stretching (1050–880 cm–1), bridging V-O...Fe and V...O...Fe stretching (880–550 cm–1), mixed V-O-V deformations and Fe-O stretching (<550 cm–1) modes. Ex situ IR spectra of films were measured after consecutive charging/discharging to various intercalation coefficients x and correlated to the current peaks in the cyclic voltammetry curves measured in 1 M LiClO4/propylene carbonate electrolyte. We classified the ex situ IR spectra of charged/discharged films according to their vibrational band changes. The results reveal that, for small values of the intercalation coefficient, crystalline FeVO4, InVO4 and Fe2V4O13 films exhibit a simultaneous decrease in the intensity of all IR bands while the band frequencies remain unaffected. For the higher intercalation levels, IR mode frequencies are shifted, signaling the presence of reduced vanadium. Further charging leads to an amorphization of the film structure, which was established from the similarity of the IR spectra of charged films with those of amorphous films prepared at lower annealing temperatures. The results confirm that ex situ IR spectroelectrochemical measurement is an effective way to assess the structural changes in films with different levels of intercalation. Electronic Publication  相似文献   

2.
Ni(La)-hydroxide films were prepared from aqueous colloidal solutions containing nickel sulfate and lanthanum acetate in the molar ratio 10:1. Two types of film were made by heating for 15 and 60?min at 300?°C. Thermogravimetry (TG) and X-ray diffraction (XRD) reveal that both films consist of NiO (bunsenite 40%) nanoparticles (particle size?~30?Å), the remainder being amorphous. IR spectroscopy showed that the amorphous phase comprised the α(II)-Ni(OH)2 phase incorporating SO4 2?, carboxylate and water species. Cyclic voltammetry (CV) in a 0.1?M LiOH electrolyte combined with in situ UV-VIS spectroscopy revealed that the colouring/bleaching changes, as a function of applied potential, differed considerably for the two types of film. Ex situ IR spectroelectrochemical measurements at near-grazing incidence angle conditions using P-polarised light (NGIA IR) were performed for films heated for 60?min in 0.1?M LiOH and 0.1?M tetramethylammonium hydroxide (TMAH) electrolytes and cycled 1402 and 1802 times. During the oxidation/reduction cycles the α(II)-Ni(OH)2 phase transforms to the γ(III)-NiOOH phase, while the β(II)-Ni(OH)2 did not develop. This explains the high cycling stability of Ni(La)-hydroxide films. The incorporation of TMA+ ions was observed from the ν(CH3) stretching band intensities in the IR spectra of cycled films.  相似文献   

3.
Summary.  Orthovanadate (M 3+VO4; M = Fe, In) and vanadate (Fe2V4O13) thin films were prepared using sol-gel synthesis and dip coating deposition. Using analytical electron microscopy (AEM), the chemical composition and the degree of crystallization of the phases present in the thin Fe–V–O films were investigated. TEM samples were prepared in both orientations: parallel (plan view) and perpendicular (cross section) to the substrate. In the first stages of crystallization, when the particle sizes were in the nanometer range, the classical identification of phases using electron diffraction was not possible. Instead of measuring d values, experimentally selected area electron diffraction (SAED) patterns were compared to calculated (simulated) patterns in order to determine the phase composition. The problems of evaluating the ratio of amorphous and crystalline phases in thin films are reported. Results of TEM and XRD as well as IR and Raman spectroscopy showed that the films made at lower temperatures (300°C) consisted of nanograins embedded in the dominating amorphous phase. Characteristic vibrational spectra allowed to distinguish between the different crystalline phases, since the IR and Raman bands showed broadening due to the decreasing particle size of the films thermally treated at lower temperatures. Vibrational analysis also showed that the electrochemical cycling of crystalline films led to spectra that were in close agreement with the spectra of the nanocrystalline films prepared at lower temperatures. The formation of a nanocrystalline structure is therefore a prerequisite for obtaining a higher charging/discharging stability of Fe–V–O and In–V–O films. Received October 4, 2001. Accepted (revised) November 23, 2001  相似文献   

4.
 The structure and the gasochromic properties of sol-gel-derived WO3 films with a monoclinic structure (m-WO3) were studied by focusing attention on the size of the monoclinic grains. The size of the m-WO3 grains is modified by the addition of an organic–inorganic hybrid to the initial peroxopolytungstic acid (W-PTA) sols which are based on chemically bonded poly-(propylene glycol) to triethoxysilane end-capping groups (ICS-PPG). The results obtained with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that the heat treatment (500°C) of WO3/ICS-PPG (0.5, 1, 2, 5, and 10 mol%) composite films results in a change of their morphology, and nanodimensional pores are formed between the grains. High-resolution TEM (HRTEM) analysis revealed the presence of an amorphous phase on the outside of the m-WO3 grains, whereas energy-dispersive X-ray spectra (EDXS) showed that this amorphous phase contained W and Si. Impregnation of the WO3/ICS-PPG film with H2PtCl6/i-propanol solution followed by heat treatment at 380°C gave the films their gasochromic properties. Infrared and Raman spectroscopic studies of the WO3/ICS-PPG film confirmed the results of the corresponding HRTEM and EDXS analysis. In situ UV/Vis and in situ IR spectra of the films were measured in hydrogen and in air, and colouring/bleaching changes and the corresponding kinetics were assessed. The IR spectra of gasochromically coloured films showed that the mesoporous WO3/ICS-PPG (1 mol%) film transforms to tetragonal H x WO3 bronze. The IR spectra of the H x WO3 bronze are discussed with the aim to establish the existence of the metal-OH vibrations of gasochromically formed oxyhydroxide tungsten bronze.  相似文献   

5.
The crystallization behavior of biosynthesized poly(3-hydroxybutyrate) film cast from 1,1,2,2-tetrachloromethane was studied by in situ FTIR spectroscopy and two-dimensional (2D) correlation analysis. Time-dependent in situ FTIR spectral variations in the C=O stretching region (1,780–1,700 cm-1) were monitored and analyzed by a series of data processing methods, including calculation of difference spectrum and second derivative spectrum, Fourier self-deconvolution, curve-fitting and 2D correlation analysis. Four bands have been resolved from the 2D correlation analysis, and the following overall sequential order among the intensity changes of the four bands has been obtained at 1,750 > 1,739 > 1,722 > 1,715 cm-1. Combining with the other data processing methods, a curve-fitting approach has been employed to reveal that there are probably five component bands under the C=O band profile, centered at 1,746; 1,737; 1,728; 1,722; and 1,712 cm-1. Detailed analysis on the in situ component band intensity variations in the C=O stretching region indicates that the crystalline and amorphous band intensities change simultaneously during the crystallization process, with no local sequential order. Further analysis on the relative area percentage changes of the five component bands suggests that the crystalline component only changes in a fully cooperative manner with part of the amorphous component at the initial crystallization period.  相似文献   

6.
Summary.  The structure and the gasochromic properties of sol-gel-derived WO3 films with a monoclinic structure (m-WO3) were studied by focusing attention on the size of the monoclinic grains. The size of the m-WO3 grains is modified by the addition of an organic–inorganic hybrid to the initial peroxopolytungstic acid (W-PTA) sols which are based on chemically bonded poly-(propylene glycol) to triethoxysilane end-capping groups (ICS-PPG). The results obtained with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that the heat treatment (500°C) of WO3/ICS-PPG (0.5, 1, 2, 5, and 10 mol%) composite films results in a change of their morphology, and nanodimensional pores are formed between the grains. High-resolution TEM (HRTEM) analysis revealed the presence of an amorphous phase on the outside of the m-WO3 grains, whereas energy-dispersive X-ray spectra (EDXS) showed that this amorphous phase contained W and Si. Impregnation of the WO3/ICS-PPG film with H2PtCl6/i-propanol solution followed by heat treatment at 380°C gave the films their gasochromic properties. Infrared and Raman spectroscopic studies of the WO3/ICS-PPG film confirmed the results of the corresponding HRTEM and EDXS analysis. In situ UV/Vis and in situ IR spectra of the films were measured in hydrogen and in air, and colouring/bleaching changes and the corresponding kinetics were assessed. The IR spectra of gasochromically coloured films showed that the mesoporous WO3/ICS-PPG (1 mol%) film transforms to tetragonal H x WO3 bronze. The IR spectra of the H x WO3 bronze are discussed with the aim to establish the existence of the metal-OH vibrations of gasochromically formed oxyhydroxide tungsten bronze. Received October 4, 2001. Accepted (revised) November 19, 2001  相似文献   

7.
TT-phase of niobium oxide was found to decompose CCl4 into CO2 most selectively (without formation of COCl2) at 453 K among oxides, amorphous Nb2O5, TT-phase Nb2O5, SiO2–Al2O3, Al2O3, V2O5, TiO2 and ZrO2.  相似文献   

8.
The growth behavior of amorphous anodic films on Ta–Nb solid solution alloys has been investigated over a wide composition range at a constant current density of 50 A m−2 in 0.1 mol dm−3 ammonium pentaborate electrolyte. The anodic films consist of two layers, comprising a thin outer Nb2O5 layer and an inner layer consisting of units of Ta2O5 and Nb2O5. The outer Nb2O5 layer is formed as a consequence of the faster outward migration of Nb5+ ions, compared with Ta5+ ions, during film growth under the high electric field. Their relative migration rates are independent of the alloy composition. The formation ratio, density, and capacitance of the films show a linear relation to the alloy composition. The susceptibility of the anodic films to field crystallization during anodizing at constant voltage increases with increasing niobium content of the alloy.  相似文献   

9.
Nanocrystalline Nb2O5 films were prepared by an extended sol-gel method. The synthesis is based on the hydrolysis of a modified Nb-alkoxide precursor. Reaction of the modified precursor (Nb(OEt)5 + 2 2,4-pentanedione) with water in ethanol leads to a homogeneous hydrolyzed solution, which is stable against precipitation of niobium oxide after evaporation of the ethanol and in the whole pH-range investigated (1–10). Autoclaving leads to amorphous gels, from which homogeneous nanocrystalline niobium oxide films of up to 15 m can be made. During annealing crystalline phases are first observed above 500°C with fully crystalline films of orthorhombic T-phase Nb2O5 attained at 600°C. The microstructural, crystallographic, optical and photoelectrical properties of the films were characterized by means of SEM, XRD, UV-VIS spectroscopy and surface photovoltage spectroscopy, respectively.  相似文献   

10.
We studied the gasochromic effect of amorphous peroxopolytungstic acid (W-PTA), W-PTA (ormosil) and crystalline WO3 films. These latter films were prepared after a heat treatment of W-PTA/ormosil films at 450°C. The ormosil served as a template, providing the monoclinic WO3 films with adequate porosity. The spill-over effect was attained by impregnating the porous WO3 crystalline films with H2PtCl6 followed by a heat treatment at 380°C. The amorphous films became gasochromic with the addition of PdCl2 to the corresponding W-PTA and W-PTA/ormosil sols.Structural features of all the films were studied with the help of infrared (IR) spectroscopy and transmission electron microscopy (TEM). In situ IR spectra of the films, performed in the presence of reducing (H2/Ar) and oxidising (O2/Ar) gases, revealed a reversible transformation of the monoclinic to the tetragonal H x WO3 phase. At the same time the coloration (reduction) of the amorphous films was accompanied by the formation of coordinated water molecules and increased numbers of W=O bonds. Gasochromic colouring/bleaching changes and the corresponding kinetics were assessed from in situ UV-visible transmission measurements on the films.  相似文献   

11.
Bi5Nb3O15 was prepared from a stoichiometric mixture of Bi2O3 and Nb2O5 at 300–500 °C. The prepared photocatalyst was characterized by diffuse reflection spectrum (DRS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and particle size analysis. The band gap, crystal structure and average grain size were determined from the above methods to be 3.25 eV, distorted pyrochlore and 4–5 μm respectively. The photoelectrochemical behavior of hydrogen-reduced Bi5Nb3O15 was investigated in 0.1 M Na2SO4 and using the Fe(CN)6 3−/4− redox couple for measuring the current-voltage characteristics. The cyclic voltammetric studies revealed that the onset potential for photocurrent generation existed at −0.45 V, which is more negative to water reduction level at pH 7.0, and that of the photocurrent at 1.0 V was observed as 0.58 mA/cm2. Photocatalytic hydrogen production has been achieved by using Bi5Nb3O15 as a photocatalyst in presence of methyl viologen. The quantum yield for hydrogen production for this system was found to be 0.83. All the studies clearly indicated that Bi5Nb3O15 has potential in solar energy conversion. Received: 22 May 1997 / Accepted: 18 September 1997  相似文献   

12.
Thin solid films of mixed Fe/Ti oxide composition (Fe/Ti molar ratios: 0.5∶1, 1∶1, 1.5∶1) have been made from Fe(NO3)3 alcoholic solution to which Ti(OiPr)4 was added. Films have been deposited by the dip-coating technique and heat-treated at 300°C and 500°C. Powders of Fe/Ti oxide heat-treated at 300°C are amorphous, while powders annealed at 500°C for 40 hours transformed to mixed rutile, pseudobrookite and hematite phases. The structure of the XRD amorphous films was identified with the help of near-normal reflection absorption (6°) (IRRA) and near-grazing incidence angle (NGIA) spectroscopy. NGIA FT-IR spectra of films are characterised with a single phonon mode appearing in the spectral range 600–950 cm−1 which shifts with increasing Ti concentration from 675 cm−1 (Fe2O3) to 904 cm−1 (TiO2) thus exhibiting one-mode behavior. Electrochemical investigations made with the help of cyclic voltammetry (CV) and chronocoulometry (CPC) performed in 0.01M LiOH and in 1M LiClO4/propylene carbonate electrolytes revealed that films are able to uptake reversibly Li+ ions with a charge capacity (Q) per film thickness (d) in the range 0.1–0.26 mC/cm2nm and 0.06 mC/cm2nm, respectively. The temperature at which the films were prepared alters the rate of Li+ insertion which is faster for less compact films obtained at 300°C. In situ UV-VIS spectroelectrochemical measurements revealed that Fe/Ti oxide films bleached in the UV spectral region (300 nm<λ<450 nm) and colored in the VIS spectral region (450 nm<λ<800 nm), thus exhibiting mixed anodic and cathodic electrochromism.  相似文献   

13.
Electrochemical formation of anodic oxide films on niobium (Nb) surfaces in 1 M H2SO4 solutions was studied using ellipsometry and Raman spectroscopy. By in situ ellipsometric measurements, the coefficient of film thickness growth and the complex index of refraction of anodic oxide films in the voltage range between 0 and 100 V were determined. The Raman spectra reveal that the thin passive films are amorphous. In the beginning of crystallization, the anodic oxide films consist of mixtures of NbO2 and Nb2O5, while NbO2 is completely transformed to Nb2O5 for thicker and well-crystallized films.  相似文献   

14.
Conducting polypyrrole (PPy) and poly(pyrrole-2,6-dimethyl-β-cyclodextrin) [poly(Py-β-DMCD)] films were prepared by electrode potential cycling on a gold electrode in aqueous and nonaqueous (acetonitrile) electrolyte solutions containing lithium perchlorate. The resulting products were characterized with cyclic voltammetry, in situ UV–Vis spectroscopy, and in situ conductivity measurements. For the electrosynthesis of poly(Py-β-DMCD), a (1:1) (mole–mole) (Py-β-DMCD) supramolecular cyclodextrin complex of pyrrole previously characterized with proton NMR spectroscopy was used as starting material. A different cyclic voltammetric behavior was observed for pyrrole and the poly(Py-β-DMCD) complex in aqueous and nonaqueous solutions during electrosynthesis. The results show that in both solutions in the presence of cyclodextrin, the oxidation potential of pyrrole monomers increases. However, the difference of oxidation potentials for films prepared in aqueous solution is larger than for the films prepared in nonaqueous solution. In situ conductivity measurements of the films show that films prepared in acetonitrile solution are more conductive than those synthesized in aqueous solutions. Maximum conductivity can be observed for PPy and poly(Py-β-DMCD) films prepared in nonaqueous solution in the range of 0.10 < E Ag/AgCl < 0.90 V and 0.30 < E Ag/AgCl < 0.90 V, respectively. In situ UV–Vis spectroelectrochemical data for both films prepared potentiodynamically by cycling the potentials from −0.40 < E Ag/AgCl < 0.90 V in nonaqueous solutions are reported. This paper is dedicated to Prof. Alan Bond on the occasion of his 65th birthday in recognition of his numerous contributions toward electrochemistry.  相似文献   

15.
In situ atomic force microscopy (AFM) allows images from the upper face and sides of TCNQ crystals to be monitored during the course of the electrochemical solid–solid state conversion of 50 × 50 μm2 three-dimensional drop cast crystals of TCNQ to CuTCNQ or M[TCNQ]2(H2O)2 (M = Co, Ni). Ex situ images obtained by scanning electron microscopy (SEM) also allow the bottom face of the TCNQ crystals, in contact with the indium tin oxide or gold electrode surface and aqueous metal electrolyte solution, to be examined. Results show that by carefully controlling the reaction conditions, nearly mono-dispersed, rod-like phase I CuTCNQ or M[TCNQ]2(H2O)2 can be achieved on all faces. However, CuTCNQ has two different phases, and the transformation of rod-like phase 1 to rhombic-like phase 2 achieved under conditions of cyclic voltammetry was monitored in situ by AFM. The similarity of in situ AFM results with ex situ SEM studies accomplished previously implies that the morphology of the samples remains unchanged when the solvent environment is removed. In the process of crystal transformation, the triple phase solid∣electrode∣electrolyte junction is confirmed to be the initial nucleation site. Raman spectra and AFM images suggest that 100% interconversion is not always achieved, even after extended electrolysis of large 50 × 50 μm2 TCNQ crystals.  相似文献   

16.
Electrochemical properties of amorphous and crystalline V2O5 films, dip-coated from V-oxoisopropoxide sols and thermally treated at various temperatures (100, 150, 200 and 300°C), have been studied in extended potential range, i.e. from 1.4 to –1.6 V vs. Ag/AgCl in 1M LiClO4/propylen carbonate (PC) electrolyte. The formation of various lithiated (-, -, - and -Li x V2O5) phases was correlated with the values of insertion coefficient x obtained from cyclic voltammograms (CV) of crystalline V2O5 films (300°C). Reversible charging was observed when films were cycled up to –1.0 V vs. Ag/AgCl, while the extension of the potential to –1.3 V vs. Ag/AgCl change the CV of films irreversibly. Charging of crystalline V2O5 films was followed by the help of in-situ UV-visible spectroscopy, that revealed the intensity variations of the polaron absorption above 600 nm and the presence of the absorbing V3+ species between 550 and 650 nm. Ex-situ IR spectra of the crystalline films charged/discharged at –1.6V/1.4V vs. Ag/AgCl confirmed the amorphisation of the films' structure.  相似文献   

17.
Thin films of biodegradable corn starch-based biopolymer electrolytes were prepared by solution casting technique. Lithium hexafluorophosphate (LiPF6) and 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BmImTf) were employed as lithium salt and ionic liquid, respectively. With reference to the temperature dependence study, Arrhenius relationship was observed. The highest ionic conductivity of (6.00 ± 0.01) × 10−4 S cm−1 was obtained at 80 °C. Based on x-ray diffraction (XRD) result, the peaks became broader with doping of ionic liquid revealing the higher amorphous region of the biopolymer electrolytes. Ionic liquid-based biopolymer electrolytes exhibited lower glass transition temperature (T g).  相似文献   

18.
 A novel polymer-forming diimide–diacid, 5,5′-bis[4-(4-trimellitimido phenoxy)phenyl]-hexahydro-4,7-methanoindan (II), was prepared by the condensation reaction of 5,5′-bis[4-(4-aminophenoxy)phenyl]-hexahydro-4,7-methanoindan with trimellitic anhydride. A series of novel aromatic poly(amide–imide)s (PAIs) containing polycyclic cardo groups was prepared by the direct polycondensation of II with various aromatic diamines using phosphorylation techniques. The polymers had inherent viscosities between 0.71 and 0.96 dl/g. The polymers were soluble in polar solvents such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide (DMAc) and N,N-dimethylformamide, and could be cast from their DMAc solutions into transparent, flexible, and tough films, except for III a . These films had yield strengths of 85–114 MPa, tensile strengths of 77–102 MPa, an elongation at break of 8–17%, and initial moduli of 2.0–2.7 GPa. Wide-angle X-ray diffraction revealed that the polymers are amorphous. The glass-transition temperatures of the polymers were in the range 242–312 °C. All the PAIs exhibited no appreciable decomposition below 430 °C, and their 10%-weight-loss temperatures were in the range 484–507 °C in nitrogen and 494–515 °C in air. Received: 26 January 1999 Accepted in revised form: 11 May 1999  相似文献   

19.
Thin films of LiMn2O4 have been prepared by RF magnetron sputtering on interdigitated microarray electrodes. In situ conductivity–potential profiles and cyclic voltammograms during extraction/insertion processes of Li ions were obtained simultaneously in nonaqueous and aqueous electrolyte solutions (1 M LiClO4/propylene carbonate and 1 M LiCl/water). The electronic conductivity of Li1– x Mn2O4 was found not to show metallic transition and maintain its semiconducting state during the extraction/insertion of Li ion. A slight decrease in conductivity was observed with increasing the anodic potential, i.e., with increasing x (lithium extraction) and recovered reversibly when the potential returned to the cathodic side (re-insertion of Li ions). Similar results were obtained in both aqueous and nonaqueous electrolyte solutions. Received: 17 June 1997 / Accepted: 2 January 1998  相似文献   

20.
In this paper, the preparation and purification of an amorphous polymer network, poly[oxymethylene-oligo(oxyethylene)], designated as aPEO, are described. The flexible CH2CH2O segments in this host polymer combine appropriate mechanical properties, over a critical temperature range from −20 to 60 °C, with labile salt-host interactions. The intensity of these interactions is sufficient to permit solubilisation of the guest salt in the host polymer while permitting adequate mobility of ionic guest species. We also report the preparation and characterisation of a novel polymer electrolyte based on this host polymer with lithium tetrafluoroborate, LiBF4, as guest salt. Electrolyte samples are thermally stable up to approximately 250 °C and completely amorphous above room temperature. The electrolyte composition determines the glass transition temperature of electrolytes and was found to vary between −50.8 and −62.4 °C. The electrolyte composition that supports the maximum room temperature conductivity of this electrolyte system is n = 5 (2.10 × 10−5 S cm−1 at 25 °C). The electrochemical stability domain of the sample with n = 5 spans about 5 V measured against a Li/Li+ reference. This new electrolyte system represents a promising alternative to LiCF3SO3 and LiClO4-doped PEO analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号