首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H. Alinejad 《Physics letters. A》2011,375(6):1005-1009
The properties of arbitrary amplitude dust-acoustic (DA) solitary waves (SWs) in a dusty plasma containing warm adiabatic dust fluid, isothermal electrons and ions following flat-topped velocity distribution is studied by the pseudo-potential approach. The effects of dust temperature and flat-trapped ions are found to significantly modify the basic features of DA-SWs as well modify the parametric regime for the existence of rarefactive solitary waves. The pseudo-potential for small amplitude limit is also analytically analyzed, and the numerical results are found to agree with analytical results.  相似文献   

2.
An exact solution is obtained for the equations that describe nonlinear ion-acoustic waves in a dusty plasma. It is shown that the solution can be in the form of nonlinear periodic waves, solitons, and supernonlinear waves whose trajectories envelope one or several separatrices in the phase portrait of the wave. Profiles of physical quantities in the wave are constructed. The supernonlinear waves are shown to be of two types, subsonic (type 1) and supersonic (type 2). Existence regions of supernonlinear waves of both types and solitons are constructed in the plane of the problem parameters.  相似文献   

3.
Properties of nonplanar (viz. cylindrical and spherical) dust ion-acoustic (DIA) solitary and shock waves propagating in a dusty plasma containing charge fluctuating stationary dust, inertial warm ions, and non-isothermal electrons following a vortex-like distribution, are investigated by the reductive perturbation method. It has been shown that all the basic features of the DIA solitary and shock waves are significantly modified by the effects of vortex-like electron distribution, dust charge fluctuation, and nonplanar cylindrical and spherical geometries. The implications of our results in some space and laboratory dusty plasma environments are briefly discussed.  相似文献   

4.
K. K. Mondal 《Pramana》2004,63(5):1021-1030
For an unmagnetized partially ionized dusty plasma containing electrons, singly charged positive ions, micron-sized massive negatively charged dust grains and a fraction of neutral atoms, dispersion relations for both the dust-ion-acoustic and the dustacoustic waves have been derived, incorporating dust charge fluctuation. The dispersion relations, under various conditions, have been exhaustively analysed. The explicit expressions for the growth rates have also been derived. International Conference on the Frontiers of Plasma Physics and Technology, 9–14 December 2002, Bangalore, India.  相似文献   

5.
The basic features of obliquely propagating dust ion-acoustic (DIA) solitary waves in a hot adiabatic magnetized dusty plasma (containing adiabatic inertia-less electrons, adiabatic inertial ions, and negatively charged static dust) have been investigated. The reductive perturbation method has been employed to derive the Korteweg-de Vries (KdV) equation which admits a small amplitude solitary wave solution. The combined effects of plasma particle (electron and ion) adiabaticity, ion-dust collision, and external magnetic field (obliqueness), which are found to significantly modify the basic features of the small but finite-amplitude DIA solitary waves are explicitly examined. The implications of our results in space and laboratory dusty plasmas are briefly discussed.  相似文献   

6.
Small amplitude ion-acoustic double layers in an unmagnetized and collisionless plasma consisting of cold positive ions, q-nonextensive electrons, and a cold electron beam are investigated. Small amplitude double layer solution is obtained by expanding the Sagdeev potential truncated method. The effects of entropic index q, speed and density of cold electron beam on double layer structures are discussed.  相似文献   

7.
The basic properties of dust-ion-acoustic (DIA) shock waves in an unmagnetized dusty plasma (containing inertial ions, kappa distributed electrons with two distinct temperatures, and negatively charged immobile dust grains) are investi- gated both numerically and analytically. The hydrodynamic equation for inertial ions has been used to derive the Burgers equation. The effects of superthermal bi-kappa electrons and ion kinematic viscosity, which are found to modify the basic features of DIA shock waves significantly, are briefly discussed.  相似文献   

8.
The nonlinear propagation of dust ion-acoustic (DIA) shock waves is studied in a charge varying dusty plasma with electrons having kappa velocity distribution. We use hot ions with equilibrium streaming speed and a fast superthermal electron charging current derived from orbit limited motion (OLM) theory. It is found that the presence of superthermal electrons does not only significantly modify the basic properties of shock waves, but also causes the existence of shock profile with only positive potential in such plasma with parameter ranges corresponding to Saturn?s rings. It is also shown that the strength and steepness of the shock waves decrease with increase of the size of dust grains and ion temperature.  相似文献   

9.
A precise theoretical investigation has been made on the cylindrical and spherical (nonplanar) Gardner solitons (GSs) and double layers (DLs) in a dusty electronegative plasma (composed of inertial positive and negative ions, Maxwellian cold electrons, non-thermal hot electrons, and negatively charged static dust). The reductive perturbation method has been used in derivation of the modified Gardner (MG) equation describing the nonlinear propagation of the dust ion-acoustic (DIA) waves. The MG equation admits solitary waves (SWs) and DLs solutions for σ around its critical value σ c (where σc is the value of σ corresponding to the vanishing of the nonlinear coefficient of the Korteweg de-Vries (K-dV) equation). The nonplanar SWs and DLs solutions are numerically analyzed and the parametric regimes for the existence of the positive as well as negative SWs and negative DLs are obtained. The basic features of nonplanar DIA SWs and DLs, which are found to be different from planar ones, are also identified. The implications of our results to different space and laboratory dusty plasma situations, are discussed.  相似文献   

10.
Theoretical investigation on the propagation of ion-acoustic waves in an unmagnetized self-gravitating plasma has been made for the existence of solitary waves using the reductive perturbation method. It is observed that nonlinear excitations follow a coupled third-order partial differential equation which is slightly different from the usual case of coupled Korteweg-de Vries (K-dV) system. It appears that the system so deduced is a two-component generalization of the previous one derived by Paul et al. (1999) in which it was shown that ion-acoustic solitary waves can not exist in such system.  相似文献   

11.
Effects of nonadiabaticity of variable dust charge, dust fluid temperature, trapped electrons as well as nonisothermality of ions on the amplitude modulation of dust acoustic waves in an unmagnetized dusty plasma are investigated. A modified nonlinear Schr?dinger equation (NLSE) is obtained by the standard reductive perturbation technique and is solved numerically by the split-step Fourier method. The modulational instability and the envelope solitary wave structure are found to be modified somewhat by the effects of nonthermally distributed ions and trapped electrons.  相似文献   

12.
Dust ion-acoustic (DIA) rogue waves are reported for a three-component ultracold quantum dusty plasma comprised of inertialess electrons, inertial ions, and negatively charged immobile dust particles. The nonlinear Schrödinger (NLS) equation appears for the low frequency limit. Modulation instability (MI) of the DIA waves is analyzed. Influence of the modulation wave number, ion-to-electron Fermi temperature ratio ρρ and dust-to-ion background density ratio NdNd on the MI growth rate is discussed. The first- and second-order DIA rogue-wave solutions of the NLS equation are examined numerically. It is found that the enhancement of NdNd and carrier wave number can increase the envelope rogue-wave amplitudes. However, the increase of ρρ reduces the envelope rogue-wave amplitudes.  相似文献   

13.
By using a perturbation method, it is shown that the nonlinear fast ion-acoustic wave of a small but finite amplitude in a collisionless plasma consisting of hot and isothermal electrons and cold ions is governed by a nonlinear equation in which, in general, the coefficients of nonlinear and dispersive terms are not constant but depend on the form of the wave-front and the lowest order term contains mean curvature of the wave-front as its coefficient.  相似文献   

14.
Head-on collision between two ion acoustic solitary waves in a Thomas-Fermi plasma containing degenerate electrons and positrons is investigated using the extended Poincaré-Lighthill-Kuo (PLK) method. The results show that the phase shifts due to the collision are strongly dependent on the positron-to-electron number density ratio, the electron-to-positron Fermi temperature ratio and the ion-to-electron Fermi temperature ratio. The present study might be helpful to understand the excitation of nonlinear ion-acoustic solitary waves in a degenerate plasma such as in superdense white dwarfs.  相似文献   

15.
Crystallization waves in the dusty component of a complex plasma, which were recently observed experimentally, have been investigated numerically. The evolution of the system of charged microparticles whose interaction between each other is described by a screened Coulomb potential (Yukawa potential) has been numerically simulated using the molecular dynamics method. It has been shown that the process of the formation and propagation of a crystallization wave in such a system is fundamentally three-dimensional. Analysis of the local structure of dust particles behind the crystallization wave front indicates the coexistence of different types of the crystal lattice including the metastable phase, i.e., a nonequilibrium phase transition.  相似文献   

16.
17.
O RAHMAN  A A MAMUN 《Pramana》2013,80(6):1031-1039
A theoretical investigation of dust-acoustic solitary waves in three-component unmagnetized dusty plasma consisting of trapped electrons, Maxwellian ions, and arbitrarily charged cold mobile dust was done. It has been found that, owing to the departure from the Maxwellian electron distribution to a vortex-like one, the dynamics of small but finite amplitude dust-acoustic (DA) waves is governed by a nonlinear equation of modified Korteweg–de Vries (mKdV) type (instead of KdV). The reductive perturbation method was employed to study the basic features (amplitude, width, speed, etc.) of DA solitary waves which are significantly modified by the presence of trapped electrons. The implications of our results in space and laboratory plasmas are briefly discussed.  相似文献   

18.
The association between the modified Korteweg-de Vries solitary wave and the modulationally unstable envelope solitary wave in a weakly relativistic unmagnetized plasma with trapped electrons is discussed. The effect of trapped electrons modifies the nonlinearity of the nonlinear Schrodinger equation and gives rise to the propagation of the modulationally unstable ion-acoustic solitary wave. The amplitude of the envelope solitary wave increases while the number of trapped electrons decreases. The velocity of the solitary wave decreases with increasing ionic temperature and increasing particle velocities. The ion oscillation mode, which satisfies the nonlinear dispersion relation, is also derived. The theory is applied to explain space observations of the solar energetic flows in interplanetary space and of the energetic particle events in the Earth's magnetosphere  相似文献   

19.
The nonlinear ion-acoustic wave excitation and its stability analysis are investigated in a magnetized quantum plasma with exchange-correlation and Bohm diffraction effects of degenerate electrons in the model. Using reductive perturbation technique, the Zakharov-Kuznetsov (ZK) equation is derived for two dimensional propagation of ion-acoustic wave in a magnetized quantum plasma. It is found that the phase speed, amplitude and width of the nonlinear ion-acoustic wave structures are affected in the presence of exchange-correlation potential in the model. The stability analysis of the 2D ion-acoustic wave pulse is also presented. It is found that growth rate of the first and second order instabilities of 2D ion acoustic wave soliton is enhanced with the inclusion of exchange-correlation potential effect in the model.  相似文献   

20.
薛具奎  段文山  郎和 《中国物理》2002,11(11):1184-1187
Using the standard reductive perturbation technique,a nonlinear Schroedinger equation is derived to study the modulational instability of finite-amplitude ion-acoustic waves in a non-magnetized warm plasma.It is found that the inclusion of ion temperature in the equation modifies the nature of the ion-acoustic wave stability and the soliton stuctures.The effects of ion plasma temperature on the modulational stability and ion-acoustic wave properties are inestigated in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号