首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 499 毫秒
1.
A new side-to-face supramolecular array of chromophores, where a pyridyl-substituted perylene bisimide dye axially binds to two ruthenium porphyrin fragments, has been prepared by self-assembly. The array is formulated as DPyPBI[Ru(TPP)(CO)](2), where DPyPBI = N,N'-di(4-pyridyl)-1,6,7,12-tetra(4-tert-butylphenoxy)perylene-3,4:9,10-tetracarboxylic acid bisimide and TPP = 5,10,15,20-tetraphenylporphyrin. The photophysical behavior of DPyPBI[Ru(TPP)(CO)](2) has been studied by fast (nanoseconds) and ultrafast (femtoseconds) time-resolved techniques. The observed behavior sharply changes with excitation wavelength, depending on whether the DPyPBI or Ru(TPP)(CO) units are excited. After DPyPBI excitation, the strong fluorescence typical of this unit is completely quenched, and time-resolved spectroscopy reveals the occurrence of photoinduced electron transfer from the ruthenium porphyrin to the perylene bisimide dye (tau = 5.6 ps) followed by charge recombination (tau = 270 ps). Upon excitation of the Ru(TPP)(CO) fragments, on the other hand, ultrafast (tau < 1 ps) intersystem crossing is followed by triplet energy transfer from the ruthenium porphyrin to the perylene bisimide dye (tau = 720 ps). The perylene-based triplet state decays to the ground state on a longer time scale (tau = 9.8 micros). The photophysics of this supramolecular array provides remarkable examples of (i) wavelength-dependent behavior (a small change in excitation wavelength causes a sharp switch from electron to energy transfer) and (ii) intramolecular sensitization (the triplet state of the perylene bisimide, inaccessible in the free dye, is efficiently populated in the array).  相似文献   

2.
A meso,meso-linked porphyrin trimer, (ZnP)3, as a light-harvesting chromophore, has been incorporated for the first time into a photosynthetic multistep electron-transfer model including ferrocene (Fc) as an electron donor and fullerene (C60) as an electron acceptor, to construct the ferrocene-meso,meso-linked porphyrin trimer-fullerene system Fc-(ZnP)3-C60. Photoirradiation of Fc-(ZnP)3-C60 results in photoinduced electron transfer from both the singlet and triplet excited states of the porphyrin trimer, 1(ZnP)3* and 3(ZnP)3*, to the C60 moiety to produce the porphyrin trimer radical cation-C60 radical anion pair, Fc-(ZnP)3*+-C60*-. Subsequent formation of the final charge-separated state Fc+-(ZnP)3-C60*- was confirmed by the transient absorption spectra observed by pico- and nanosecond time-resolved laser flash photolysis. The final charge-separated state decays, obeying first-order kinetics, with a long lifetime (0.53 s in DMF at 163 K) that is comparable with that of the natural bacterial photosynthetic reaction center. More importantly, the quantum yield of formation of the final charge-separated state (0.83 in benzonitrile) remains high, despite the large separation distance between the Fc+ and C60*- moieties. Such a high quantum yield results from efficient charge separation through the porphyrin trimer, whereas a slow charge recombination is associated with the localized porphyrin radical cation in the porphyrin trimer. The light-harvesting efficiency in the visible region has also been much improved in Fc-(ZnP)3-C60 because of exciton coupling in the porphyrin trimer as well as an increase in the number of porphyrins.  相似文献   

3.
An electron‐deficient copper(III) corrole was utilized for the construction of donor–acceptor conjugates with zinc(II) porphyrin (ZnP) as a singlet excited state electron donor, and the occurrence of photoinduced charge separation was demonstrated by using transient pump–probe spectroscopic techniques. In these conjugates, the number of copper corrole units was varied from 1 to 2 or 4 units while maintaining a single ZnP entity to observe the effect of corrole multiplicity in facilitating the charge‐separation process. The conjugates and control compounds were electrochemically and spectroelectrochemically characterized. Computational studies revealed ground state geometries of the compounds and the electron‐deficient nature of the copper(III) corrole. An energy level diagram was established to predict the photochemical events by using optical, emission, electrochemical, and computational data. The occurrence of charge separation from singlet excited zinc porphyrin and charge recombination to yield directly the ground state species were evident from the diagram. Femtosecond transient absorption spectroscopy studies provided spectral evidence of charge separation in the form of the zinc porphyrin radical cation and copper(II) corrole species as products. Rates of charge separation in the conjugates were found to be of the order of 1010 s?1 and increased with increasing multiplicity of copper(III) corrole entities. The present study demonstrates the importance of copper(III) corrole as an electron acceptor in building model photosynthetic systems.  相似文献   

4.
The synthesis, electrochemical properties, and photoinduced electron transfer processes of a series of three novel zinc(II)-gold(III) bisporphyrin dyads (ZnP--S--AuP(+)) are described. The systems studied consist of two trisaryl porphyrins connected directly in the meso position via an alkyne unit to tert-(phenylenethynylene) or penta(phenylenethynylene) spacers. In these dyads, the estimated center to center interporphyrin separation distance varies from 32 to 45 A. The absorption, emission, and electrochemical data indicate that there are strong electronic interactions between the linked elements, thanks to the direct attachment of the spacer on the porphyrin ring through the alkyne unit. At room temperature in toluene, light excitation of the zinc porphyrin results in almost quantitative formation of the charge shifted state (.+)ZnP--S--AuP(.), whose lifetime is in the order of hundreds of picoseconds. In this solvent, the charge-separated state decays to the ground state through the intermediate population of the zinc porphyrin triplet excited state. Excitation of the gold porphyrin leads instead to rapid energy transfer to the triplet ZnP. In dichloromethane the charge shift reactions are even faster, with time constants down to 2 ps, and may be induced also by excitation of the gold porphyrin. In this latter solvent, the longest charge-shifted lifetime (tau=2.3 ns) was obtained with the penta-(phenylenethynylene) spacer. The charge shift reactions are discussed in terms of bridge-mediated super-exchange mechanisms as electron or hole transfer. These new bis-porphyrin arrays, with strong electronic coupling, represent interesting molecular systems in which extremely fast and efficient long-range photoinduced charge shift occurs over a long distance. The rate constants are two to three orders of magnitude larger than for corresponding ZnP--AuP(+) dyads linked via meso-phenyl groups to oligo-phenyleneethynylene spacers. This study demonstrates the critical impact of the attachment position of the spacer on the porphyrin on the electron transfer rate, and this strategy can represent a useful approach to develop molecular photonic devices for long-range charge separations.  相似文献   

5.
A meso,meso-linked porphyrin dimer [(ZnP)(2)] as a light-harvesting chromophore has been incorporated into a photosynthetic multistep electron-transfer model for the first time, including ferrocene (Fc), as an electron donor and fullerene (C(60)) as an electron acceptor to construct the ferrocene-meso,meso-linked porphyrin dimer-fullerene system (Fc-(ZnP)(2)-C(60)). Photoirradiation of Fc-(ZnP)(2)-C(60) results in photoinduced electron transfer from the singlet excited state of the porphyrin dimer [(1)(ZnP)(2)] to the C(60) moiety to produce the porphyrin dimer radical cation-C(60) radical anion pair, Fc-(ZnP)(2)(*+)-C(60)(*-). In competition with the back electron transfer from C(60)(*-) to (ZnP)(2)(*+) to the ground state, an electron transfer from Fc to (ZnP)(2)(*+) occurs to give the final charge-separated (CS) state, that is, Fc(+)-(ZnP)(2)-C(60)(*-), which is detected as the transient absorption spectra by the laser flash photolysis. The quantum yield of formation of the final CS state is determined as 0.80 in benzonitrile. The final CS state decays obeying first-order kinetics with a lifetime of 19 micros in benzonitrile at 295 K. The activation energy for the charge recombination (CR) process is determined as 0.15 eV in benzonitrile, which is much larger than the value expected from the direct CR process to the ground state. This value is rather comparable to the energy difference between the initial CS state (Fc-(ZnP)(2)(*+)-C(60)(*-)) and the final CS state (Fc(+)-(ZnP)(2)-C(60)(*-)). This indicates that the back electron transfer to the ground state occurs via the reversed stepwise processes,that is, a rate-limiting electron transfer from (ZnP)(2) to Fc(+) to give the initial CS state (Fc-(ZnP)(2)(*+)-C(60)(*-)), followed by a fast electron transfer from C(60)(*-) to (ZnP)(2)(*+) to regenerate the ground state, Fc-(ZnP)(2)-C(60). This is in sharp contrast with the extremely slow direct CR process of bacteriochlorophyll dimer radical cation-quinone radical anion pair in bacterial reaction centers.  相似文献   

6.
Unprecedented neutral perylene‐3,4:9,10‐tetracarboxylic acid bisimide (PBI) radicals and biradicals were synthesized by facile chemical oxidation of 4‐hydroxyaryl‐substituted PBIs. Subsequent characterization by optical and magnetic spectroscopic techniques, as well as quantum chemical calculations, revealed an open‐shell singlet biradical ground state for the PBI biradical OS ‐ 2.. (〈s2〉=1.2191) with a relatively small singlet–triplet energy gap of 0.041 eV and a large singlet biradical character of y=0.72.  相似文献   

7.
Photoinduced electron transfer from fluorene to perylene bisimide has been studied for 2,7-bis(N-(1-hexylheptyl)-3,4:9,10-perylene-bisimide-N'-yl))-9,9-didodecylfluorene (PFP) in 11 different organic solvents. The intramolecular charge-separated state in PFP is almost isoenergetic with the locally excited state of the perylene bisimide. As a consequence of the small change in free energy for charge separation, the electron transfer rate strongly depends on subtle changes in the medium. The rate constant k(CS) for the electron transfer from fluorene to perylene bisimide moiety in the excited state varies over more than 2 orders of magnitude ( approximately 10(8)-10(10) s(-1)) with the solvent but does not show the familiar increase with polarity. The widely differing rate constants can be successfully explained by considering (1) the contribution of the polarization energy of the dipole moment in the transition state and by (2) the classical Marcus-Jortner model and assuming a spherical cavity for the charge-separated state. Using the first model, we show that lnk(CS) should vary linearly with Deltaf [Deltaf = (epsilon(r) - 1)/(2epsilon(r) + 1) - (n(2) - 1)/(2n(2) + 1), where epsilon(r) and n represent the static dielectric constant and the refractive index of the solvent, respectively], in accordance with experimental results. The second model, where the reorganization energy scales linearly with Deltaf, provides quantitative agreement with experimental rate constants within a factor of 2.  相似文献   

8.
A self-assembled supramolecular triad as a model to mimic the light-induced events of the photosynthetic antenna-reaction center, that is, ultrafast excitation transfer followed by electron transfer ultimately generating a long-lived charge-separated state, has been accomplished. Boron dipyrrin (BDP), zinc porphyrin (ZnP) and fullerene (C(60)), respectively, constitute the energy donor, electron donor and electron acceptor segments of the antenna-reaction center imitation. Unlike in the previous models, the BDP entity was placed between the electron donor, ZnP and electron acceptor, C(60) entities. For the construction, benzo-18-crown-6 functionalized BDP was synthesized and subsequently reacted with 3,4-dihydroxyphenyl functionalized ZnP through the central boron atom to form the crown-BDP-ZnP dyad. Next, an alkyl ammonium functionalized fullerene was used to self-assemble the crown ether entity of the dyad via ion-dipole interactions. The newly formed supramolecular triad was fully characterized by spectroscopic, computational and electrochemical methods. Steady-state fluorescence and excitation studies revealed the occurrence of energy transfer upon selective excitation of the BDP in the dyad. Further studies involving the pump-probe technique revealed excitation transfer from the (1)BDP* to ZnP to occur in about 7 ps, much faster than that reported for other systems in this series of triads, as a consequence of shorter distance between the entities. Upon forming the supramolecular triad by self-assembling fullerene, the (1)ZnP(*) produced by direct excitation or by energy transfer mechanism resulted in an initial electron transfer to the BDP entity. The charge recombination resulted in the population of the triplet excited state of C(60), from where additional electron transfer occurred to produce C(60)(?-):crown-BDP-ZnP(?+) ion pair as the final charge-separated species. Nanosecond transient absorption studies revealed the lifetime of the charge-separated state to be ~100 μs, the longest ever reported for this type of antenna-reaction center mimics, indicating better charge stabilization as a result of the different disposition of the entities of the supramolecular triad.  相似文献   

9.
A Suzuki polycondensation reaction has been used to synthesize two copolymers consisting of alternating oligo(p-phenylene vinylene) (OPV) donor and perylene bisimide (PERY) acceptor chromophores. The copolymers differ by the length of the saturated spacer that connects the OPV and PERY units. Photoinduced singlet energy transfer and photoinduced charge separation in these polychromophores have been studied in solution and in the solid state via photoluminescence and femtosecond pump-probe spectroscopy. In both polymers a photoinduced electron transfer occurs within a few picoseconds after excitation of the OPV or the PERY chromophore. The electron transfer from OPV excited state competes with a singlet energy transfer state to the PERY chromophore. The differences in rate constants for the electron- and energy-transfer processes are discussed on the basis of correlated quantum-chemical calculations and in terms of conformational preferences and folding of the two polymers. In solution, the lifetime of the charge-separated state is longer than in the films where geminate recombination is much faster. However, in the films some charges are able to escape from geminate recombination and diffuse away and can be collected at the electrodes when the polymers are incorporated in a photovoltaic device.  相似文献   

10.
Two self‐assembled supramolecular donor–acceptor triads consisting of AlIII porphyrin (AlPor) with axially bound naphthalenediimide (NDI) as an acceptor and tetrathiafulvalene (TTF) as a secondary donor are reported. In the triads, the NDI and TTF units are attached to AlIII on opposite faces of the porphyrin, through covalent and coordination bonds, respectively. Fluorescence studies show that the lowest excited singlet state of the porphyrin is quenched through electron transfer to NDI and hole transfer to TTF. In dichloromethane hole transfer to TTF dominates, whereas in benzonitrile (BN) electron transfer to NDI is the main quenching pathway. In the nematic phase of the liquid crystalline solvent 4‐(n‐pentyl)‐4′‐cyanobiphenyl (5CB), a spin‐polarized transient EPR spectrum that is readily assigned to the weakly coupled radical pair TTF.+NDI.? is obtained. The initial polarization pattern indicates that the charge separation occurs through the singlet channel and that singlet–triplet mixing occurs in the primary radical pair. At later time the polarization pattern inverts as a result of depopulation of the states with singlet character by recombination to the ground state. The singlet lifetime of TTF.+NDI.? is estimated to be 200–300 ns, whereas the triplet lifetime in the approximately 350 mT magnetic field of the X‐band EPR spectrometer is about 10 μs. In contrast, in dichloromethane and BN the lifetime of the charge separation is <10 ns.  相似文献   

11.
Three porphyrin-fullerene dyads, in which a diyne bridge links C(60) with a beta-position on a tetraarylporphyrin, have been synthesized. The free-base dyad was prepared, as well as the corresponding Zn(II) and Ni(II) materials. These represent the first examples of a new class of conjugatively linked electron donor-acceptor systems in which pi-conjugation extends from the porphyrin ring system directly to the fullerene surface. The processes that occur following photoexcitation of these dyads were examined using fluorescence and transient absorption techniques on the femtosecond, picosecond, and nanosecond time scales. In sharp contrast to the photodynamics associated with singlet excited-state decay of reference tetraphenylporphyrins (ZnTPP, NiTPP, and H(2)TPP), the diyne-linked dyads undergo ultrafast (<10 ps) singlet excited-state deactivation in toluene, tetrahydrofuran (THF), and benzonitrile (PhCN). Transient absorption techniques with the ZnP-C(60) dyad clearly show that in toluene intramolecular energy transfer (EnT) to ultimately generate C(60) triplet excited states is the dominant singlet decay mechanism, while intramolecular electron transfer (ET) dominates in THF and PhCN to give the ZnP(*+)/C(60)(*-) charge-separated radical ion pair (CSRP). Electrochemical studies indicate that there is no significant charge transfer in the ground states of these systems. The lifetime of ZnP(*+)/C(60)(*-) in PhCN was approximately 40 ps, determined by two different types of transient absorption measurement in two different laboratories. Thus, in this system, the ratio of the rates for charge separation (k(CS)) to rates for charge recombination (k(CR)), k(CS)/k(CR), is quite small, approximately 7. The fact that charge separation (CS) rates increase with increasing solvent polarity is consistent with this process occurring in the normal region of the Marcus curve, while the slower charge recombination (CR) rates in less polar solvents indicate that the CR process occurs in the Marcus inverted region. While photoinduced ET occurs on a similar time scale in a related dyad 15 in which a diethynyl bridge connects C(60) to the para position of a meso phenyl moiety of a tetrarylporphyrin, CR occurs much more slowly; i.e., k(CS)/k(CR) approximately equal to 7400. Thus, the position at which the conjugative linker is attached to the porphyrin moiety has a dramatic influence on k(CR) but not on k(CS). On the basis of electron density calculations, we tentatively conclude that unfavorable orbital symmetries inhibit charge recombination in 15 vis a vis the beta-linked dyads.  相似文献   

12.
A detailed photophysical characterization of a couple of new perylene imide derivatives, a carboxylic trisimide PIx, and an asymmetrically substituted carboxylic bisimide PIa is presented. PIx and PIa have the lowest singlet excited state just below 2.6 eV. The dyes are remarkably fluorescent (?(f) = 0.37 ± 0.03 for PIa and ?(f) = 0.58 ± 0.04 for PIx in toluene), but they also display an efficient intersystem crossing. This leads to typical excited triplet photophysics/photochemistry, with intense triplet state absorption spectra and efficient singlet oxygen ((1)Δ(g)) photosensitization (?(Δ) = 0.68 ± 0.02 for PIa and 0.44 ± 0.02 for PIx in toluene). On the basis of the measured ?(Δ), a ?(isc) of 0.65 ± 0.02 for PIa and 0.43 ± 0.02 for PIx in toluene is derived. PIx reduces at -0.58 eV vs SCE, almost similarly to the corresponding symmetrically substituted perylene bisimide PI0, but unlike the latter, it has the first oxidation potential above +1.9 V. PIa is more electron rich and displays a more difficult first reduction at -0.95 V with a more facile oxidation at +1.75 V, similar to that of the parent PI0. The absorption spectra of the excited singlet and triplet states and that of electrochemically generated monoanions are reported.  相似文献   

13.
A new group of porphyrin-fullerene dyads with an azobenzene linker was synthesized, and the photochemical and photophysical properties of these materials were investigated using steady-state and time-resolved spectroscopic methods. The electrochemical properties of these compounds were also studied in detail. The synthesis involved oxidative heterocoupling of free base tris-aryl-p-aminophenyl porphyrins with a p-aminophenylacetal, followed by deprotection to give the aldehyde, and finally Prato 1,3-dipolar azomethineylide cycloaddition to C60. The corresponding Zn(II)-porphyrin (ZnP) dyads were made by treating the free base dyads with zinc acetate. The final dyads were characterized by their 1H NMR, mass, and UV-vis spectra. 3He NMR was used to determine if the products are a mixture of cis and trans stereoisomers, or a single isomer. The data are most consistent with the isolation of only a single configurational isomer, assigned to the trans (E) configuration. The ground-state UV-vis spectra are virtually a superimposition of the spectral features of the individual components, indicating there is no interaction of the fullerene (F) and porphyrin (H2P/ZnP) moieties in the ground state. This conclusion is supported by the electrochemical data. The steady-state and time-resolved fluorescence spectra indicate that the porphyrin fluorescence in the dyads is very strongly quenched at room temperature in the three solvents studied: toluene, tetrahydrofuran (THF), and benzonitrile (BzCN). The fluorescence lifetimes of the dyads in all solvents are sharply reduced compared to those of H2P and ZnP standards. In toluene, the lifetimes of the free base dyads are 600-790 ps compared to 10.1 ns for the standard, while in THF and BzCN the dyad lifetimes are less than 100 ps. For the ZnP dyads, the fluorescence lifetimes were 10-170 ps vs 2.1-2.2 ns for the ZnP references. The mechanism of the fluorescence quenching was established using time-resolved transient absorption spectroscopy. In toluene, the quenching process is singlet-singlet energy transfer (k approximately 10(11) s-1) to give C60 singlet excited states which decay with a lifetime of 1.2 ns to give very long-lived C60 triplet states. In THF and BzCN, quenching of porphyrin singlet states occurs at a similar rate, but now by electron transfer, to give charge-separated radical pair (CSRP) states, which show transient absorption spectra very similar to those reported for other H2P-C60 and ZnP-C60 dyad systems. The lifetimes of the CSRP states are in the range 145-435 ns in THF, much shorter than for related systems with amide, alkyne, silyl, and hydrogen-bonded linkers. Thus, both forward and back electron transfer is facilitated by the azobenzene linker. Nonetheless, the charge recombination is 3-4 orders of magnitude slower than charge separation, demonstrating that for these types of donor-acceptor systems back electron transfer is occurring in the Marcus inverted region.  相似文献   

14.
In this work, the authors use complete active space self-consistent field method to investigate the photoinduced charge-separated states and the electron transfer transition in complexes ethylene-tetracyanoethylene and tetramethylethylene-tetracyanoethylene. Geometries of isolated tetracyanoethylene, ethylene, and tetramethylethylene have been optimized. The ground state and the low-lying excited states of ethylene and tetracyanoethylene have been optimized. The state energies in the gas phase have been obtained and compared with the experimentally observed values. The torsion barrier of tetracyanoethylene has been investigated through the state energy calculation at different conformations. Attention has been particularly paid to the charge-separated states and the electron transfer transition of complexes. The stacked conformations of the donor-acceptor complexes have been chosen for the optimization of the ground and low-lying excited states. Equilibrium solvation has been considered by means of conductor-like screening model both in water and in dichloromethane. It has been found that the donor and tetracyanoethylene remain neutral in complexes in ground state (1)A(1) and in lowest triplet state (3)B(1), but charge separation appears in excited singlet state (1)B(1). Through the correction of nonequilibrium solvation energy based on the spherical cavity approximation, pi-->pi* electron transfer transition energies have been obtained. Compared with the experimental measurements in dichloromethane, the theoretical results in the same solvent are found higher by about 0.5 eV.  相似文献   

15.
Molecular oxygen's unique involvement in electron-transfer processes is demonstrated on a series of dyads between porphyrin derivatives and fullerene C60. It has been shown for the first time that oxygen can serve as an inhibitor of back electron transfer by enhancing intersystem crossing of a singlet radical ion pair into its triplet state. The effect is observed only when energy of the charge-separated state is lower than that of the locally excited triplet states. Due to the spin statistics, the reverse intersystem crossing is less efficient, allowing use of oxygen and other paramagnetic species for impeding charge recombination in various electron-transfer systems.  相似文献   

16.
Three rotaxanes, with axles with two zinc porphyrins (ZnPs) at both ends penetrating into a necklace pending a C60 moiety, were synthesized with varying interlocked structures and axle lengths. The intra-rotaxane photoinduced electron transfer processes between the spatially positioned C60 and ZnP in rotaxanes were investigated. Charge-separated (CS) states (ZnP*+, C60*-)rotaxane are formed via the excited singlet state of ZnP (1ZnP*) to the C60 moiety in solvents such as benzonitrile, THF, and toluene. The rate constants and quantum yields of charge separation via 1ZnP decrease with axle length, but they are insensitive to solvent polarity. When the axle becomes long, charge separation takes place via the excited triplet state of ZnP (3ZnP*). The lifetime of the CS state increases with axle length from 180 to 650 ns at room temperature. The small activation energies of charge recombination were evaluated by temperature dependence of electron-transfer rate constants, probably reflecting through-space electron transfer in the rotaxane structures.  相似文献   

17.
The first example of a working model of the photosynthetic antenna-reaction center complex, constructed via self-assembled supramolecular methodology, is reported. For this, a supramolecular triad is assembled by axially coordinating imidazole-appended fulleropyrrolidine to the zinc center of a covalently linked zinc porphyrin-boron dipyrrin dyad. Selective excitation of the boron dipyrrin moiety in the boron dipyrrin-zinc porphyrin dyad resulted in efficient energy transfer (k(ENT)(singlet) = 9.2 x 10(9) s(-)(1); Phi(ENT)(singlet) = 0.83) creating singlet excited zinc porphyrin. Upon forming the supramolecular triad, the excited zinc porphyrin resulted in efficient electron transfer to the coordinated fullerenes, resulting in a charge-separated state (k(cs)(singlet) = 4.7 x 10(9) s(-)(1); Phi(CS)(singlet) = 0.9). The observed energy transfer followed by electron transfer in the present supramolecular triad mimics the events of natural photosynthesis. Here, the boron dipyrrin acts as antenna chlorophyll that absorbs light energy and transports spatially to the photosynthetic reaction center, while the electron transfer from the excited zinc porphyrin to fullerene mimics the primary events of the reaction center where conversion of the electronic excitation energy to chemical energy in the form of charge separation takes place. The important feature of the present model system is its relative "simplicity" because of the utilized supramolecular approach to mimic rather complex "combined antenna-reaction center" events of photosynthesis.  相似文献   

18.
Photosynthetic reaction centers convert excitation energy from absorbed sunlight into chemical potential energy in the form of a charge-separated state. The rates of the electron transfer reactions necessary to achieve long-lived, high-energy charge-separated states with high quantum yields are determined in part by precise control of the electronic coupling among the chromophores, donors, and acceptors and of the reaction energetics. Successful artificial photosynthetic reaction centers for solar energy conversion have similar requirements. Control of electronic coupling in particular necessitates chemical linkages between active component moieties that both mediate coupling and restrict conformational mobility so that only spatial arrangements that promote favorable coupling are populated. Toward this end, we report the synthesis, structure, and photochemical properties of an artificial reaction center containing two porphyrin electron donor moieties and a fullerene electron acceptor in a macrocyclic arrangement involving a ring of 42 atoms. The two porphyrins are closely spaced, in an arrangement reminiscent of that of the special pair in bacterial reaction centers. The molecule is produced by an unusual cyclization reaction that yields mainly a product with C(2) symmetry and trans-2 disubstitution at the fullerene. The macrocycle maintains a rigid, highly constrained structure that was determined by UV-vis spectroscopy, NMR, mass spectrometry, and molecular modeling at the semiempirical PM6 and DFT (B3LYP/6-31G**) levels. Transient absorption results for the macrocycle in 2-methyltetrahydrofuran reveal photoinduced electron transfer from the porphyrin first excited singlet state to the fullerene to form a P(?+)-C(60)(?-)-P charge separated state with a time constant of 1.1 ps. Photoinduced electron transfer to the fullerene excited singlet state to form the same charge-separated state has a time constant of 15 ps. The charge-separated state is formed with a quantum yield of essentially unity and has a lifetime of 2.7 ns. The ultrafast charge separation coupled with charge recombination that is over 2000 times slower is consistent with a very rigid molecular structure having a small reorganization energy for electron transfer, relative to related porphyrin-fullerene molecules.  相似文献   

19.
[2]Catenanes made up of several polyether-strapped porphyrin macrocycles interlinked with the cyclic electron acceptor cyclobis(paraquat-p-phenylene) were spectroscopically, photophysically, and electrochemically characterized. The catenanes exhibit very rich redox behavior due to the presence of several different and interacting electro-active subunits. The redox patterns represent useful "fingerprints" that provide detailed information on the electronic interactions and the chemical environments that the electroactive subunits experience in the supramolecular arrays. A photoinduced electron transfer from the porphyrin excited state (charge separation CS) occurs with tau=20 ps in the catenanes with a larger strap and faster than 20 ps (instrumental resolution) in the catenanes with a shorter strap. The resulting charge-separated state recombines to the ground state (charge recombination CR) with lifetimes similar in all cases, 41+/-4 ps. Comparison of the electron transfer rates CS and CR in the host-guest complexes of the same porphyrins with the noncyclic electron acceptor paraquat, indicate slower reactions in the [2]catenanes. This behavior is assigned to the different separation between reacting partners determined by the type of bond (weak interaction or mechanical) and to a two-step consecutive electron transfer to different sites of the macrocyclic electron acceptor in the catenanes which retards charge recombination.  相似文献   

20.
The boron dipyrrin (Bodipy) chromophore was combined with either a free-base or a Zn porphyrin moiety (H(2)P and ZnP respectively), via an easy synthesis involving a cyanuric chloride bridging unit, yielding dyads Bodipy-H(2)P (4) and Bodipy-ZnP (5). The photophysical properties of Bodipy-H(2)P (4) and Bodipy-ZnP (5) were investigated by UV-Vis absorption and emission spectroscopy, cyclic voltammetry, and femtosecond transient absorption spectroscopy. The comparison of the absorption spectra and cyclic voltammograms of dyads Bodipy-H(2)P (4) and Bodipy-ZnP (5) with those of their model compounds Bodipy, H(2)P, and ZnP shows that the spectroscopic and electrochemical properties of the constituent chromophores are essentially retained in the dyads indicating negligible interaction between them in the ground state. In addition, luminescence and transient absorption experiments show that excitation of the Bodipy unit in Bodipy-H(2)P (4) and Bodipy-ZnP (5) into its first singlet excited state results in rapid Bodipy to porphyrin energy transfer-k(4) = 2.9 × 10(10) s(-1) and k(5) = 2.2 × 10(10) s(-1) for Bodipy-H(2)P (4) and Bodipy-ZnP (5), respectively-generating the first porphyrin-based singlet excited state. The porphyrin-based singlet excited states give rise to fluorescence or undergo intersystem crossing to the corresponding triplet excited states. The title complexes could also be used as precursors for further substitution on the third chlorine atom on the cyanuric acid moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号