首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new biomolecular device for investigating the interactions of ligands with constrained DNA quadruplex topologies, using surface plasmon resonance (SPR), is reported. Biomolecular systems containing an intermolecular‐like G‐quadruplex motif 1 (parallel G‐quadruplex conformation), an intramolecular G‐quadruplex 2 , and a duplex DNA 3 have been designed and developed. The method is based on the concept of template‐assembled synthetic G‐quadruplex (TASQ), whereby quadruplex DNA structures are assembled on a template that allows precise control of the parallel G‐quadruplex conformation. Various known G‐quadruplex ligands have been used to investigate the affinities of ligands for intermolecular 1 and intramolecular 2 DNA quadruplexes. As anticipated, ligands displaying a π‐stacking binding mode showed a higher binding affinity for intermolecular‐like G‐quadruplexes 1 , whereas ligands with other binding modes (groove and/or loop binding) showed no significant difference in their binding affinities for the two quadruplexes 1 or 2 . In addition, the present method has also provided information about the selectivity of ligands for G‐quadruplex DNA over the duplex DNA. A numerical parameter, termed the G‐quadruplex binding mode index (G4‐BMI), has been introduced to express the difference in the affinities of ligands for intermolecular G‐quadruplex 1 against intramolecular G‐quadruplex 2 . The G‐quadruplex binding mode index (G4‐BMI) of a ligand is defined as follows: G4‐BMI=KDintra/KDinter, where KDintra is the dissociation constant for intramolecular G‐quadruplex 2 and KDinter is the dissociation constant for intermolecular G‐quadruplex 1 . In summary, the present work has demonstrated that the use of parallel‐constrained quadruplex topology provides more precise information about the binding modes of ligands.  相似文献   

2.
Adrenoceptors are members of the important G protein coupled receptor family for which the detailed mechanism of activation remains unclear. In this study, we have combined docking and molecular dynamics simulations to model the ligand induced effect on an homology derived human α1A adrenoceptor. Analysis of agonist/α1A adrenoceptor complex interactions focused on the role of the charged amine group, the aromatic ring, the N-methyl group of adrenaline, the beta hydroxyl group and the catechol meta and para hydroxyl groups of the catecholamines. The most critical interactions for the binding of the agonists are consistent with many earlier reports and our study suggests new residues possibly involved in the agonist-binding site, namely Thr-174 and Cys-176. We further observe a number of structural changes that occur upon agonist binding including a movement of TM-V away from TM-III and a change in the interactions of Asp-123 of the conserved DRY motif. This may cause Arg-124 to move out of the TM helical bundle and change the orientation of residues in IC-II and IC-III, allowing for increased affinity of coupling to the G-protein.  相似文献   

3.
G protein coupled receptors (GPCRs) represent a major superfamily of transmembrane receptor proteins that are crucial in cellular signaling and are major pharmacological targets. While the activity of GPCRs can be modulated by agonist binding, the mechanisms that link agonist binding to G protein coupling are poorly understood. Here we present a method to accurately examine the activity of ligands in their bound state, even at low affinity, by solid-state NMR dipolar correlation spectroscopy and confront this method with the human H1 receptor. The analysis reveals two different charge states of the bound agonist, dicationic with a charged imidazole ring and monocationic with a neutral imidazole ring, with the same overall conformation. The combination of charge difference and pronounced heterogeneity agrees with converging evidence that the active and inactive states of the GPCR represent a dynamic equilibrium of substates and that proton transfer between agonist and protein side chains can shift this equilibrium by stabilizing the active receptor population relative to the inactive one. In fact, the data suggest a global functional analogy between H1 receptor activation and the meta I/meta II charge/discharge equilibrium in rhodopsin (GPCR). This corroborates current ideas on unifying principles in GPCR structure and function.  相似文献   

4.
Comparative molecular dynamics simulations of the 5-HT(1A) receptor in its empty as well as agonist- (i.e. active) and antagonist-bound (i.e. nonactive) forms have been carried out. The agonists 5-HT and (R)-8-OH-DPAT as well as the antagonist WAY100635 have been employed. The results of this study strengthen the hypothesis that the receptor portions close to the E/DRY/W motif, with prominence to the cytosolic extensions of helices 3 and 6, are particularly susceptible to undergo structural modification in response to agonist binding. Despite the differences in the structural/dynamics behavior of the two agonists when docked into the 5-HT(1A) receptor, they both exert a destabilization of the intrahelical and interhelical interactions found in the empty and antagonist-bound receptor forms between the arginine of the E/DRY sequence and both D133(3.49) and E340(6.30). For both agonists, the chemical information transfer from the extracellular to the cytosolic domains is mediated by a cluster of aromatic amino acids in helix 6, following the ligand interaction with selected amino acids in the extracellular half of the receptor, such as D116(3.32), S199(5.42), Y195(5.38), and F361(6.51). A significant reduction in the bend at P360(6.50), as compared to the empty and the antagonist-bound receptor forms, is one of the features of the agonist-bound forms that is related to the breakage of the interhelical salt bridge between the E/DRY arginine and E340(6.30). Another structural feature, shared by the agonist-bound receptor forms and not by the empty and antagonist-bound forms, is the detachment of helices 2 and 4, as marked by the movement of W161(4.50) away from helix 2, toward the membrane space.  相似文献   

5.
Herein we report the development of a new series of surface bound anion sensors exploiting the urea or thiourea motif capable of binding anions through hydrogen bonding interactions. The use of high resolution magic angle spinning 1H NMR allows the direct comparison of the anion binding properties of these receptors in solution versus those tethered to polymer resins. Some intramolecular hydrogen bonding and solvent effects were observed at the solution:surface interface however in general the anion binding properties of the polymer bound urea and thiourea receptors were maintained.  相似文献   

6.
Protease-activated G protein-coupled receptors (PAR1-4) are tethered-ligand receptors that are activated by proteolytic cleavage of the extracellular domain (exodomain) of the receptor. PAR1, the prototypic member of the PAR family, is the high-affinity thrombin receptor of platelets and vascular endothelium and plays a critical role in blood coagulation, thrombosis, and inflammation. Here, we describe the solution structure of the thrombin-cleaved exodomain of PAR1. The side chains of a hydrophobic hirudin-like (Hir) sequence and adjacent anionic motif project into solution. Docking of the exodomain Hir sequence to exosite I of thrombin reveals that the tethered ligand in the cleaved exodomain bends away from thrombin, leaving its active site available to another large macromolecular substrate. The N-terminal ligand is longer than anticipated and forms an intramolecular complex with a region located in the C terminus of the exodomain. Mutational analysis confirmed that this C-terminal region is a ligand binding site for both intra- and intermolecular ligands. A lipidated-ligand binding site peptide was found to be an effective inhibitor of thrombin-induced platelet aggregation.  相似文献   

7.
ortho-Iminomethylphenylboronic acids were synthesized from the reaction of 2-formyl–phenylboronic acid with primary aromatic amines. Reduction of these compounds yielded the corresponding aminomethylphenylboronic acids. For both types of the compounds, the crystal structure was determined by single crystal X-ray diffraction method. Hydrogen-bonded dimers with an additional intramolecular B–O–H…N hydrogen bond have been observed. Calculations at MP2/6–31+G** level proved that the most stable form is that with the above-mentioned intramolecular hydrogen bond while the form with dative N→B bond is less favoured. Since the calculated energy difference is small, the competition between possible forms was analyzed in terms of substituent effect stabilization energy (SESE). In the case of p-iminomethylphenylboronic acid, both hydroxyl groups are engaged in intermolecular O–H…O interactions resulting in a supramolecular ribbon motif.  相似文献   

8.
Guanophostin A, the guanosine counterpart of the inositol 1,4,5-trisphosphate receptor agonist adenophostin A, has been synthesized and is the first synthetic adenophostin A-like analogue to be equipotent to its parent in stimulating intracellular Ca2+ release; its nucleotide moiety is proposed to interact with the receptor binding core by guanine base cation-pi stacking with Arg504 and hydrogen bonding with Glu505 and interaction of the ribosyl 2'-phosphate group with the helix-dipole of alpha6.  相似文献   

9.
In this study, the interactions between oxidative 2′-deoxyadenosine nucleotides (2OHA, 8OHA, 8OXOA, fapyA) and canonical ribonucleotides (A, C, G, U) were investigated at B3LYP level with 6-31G(d) basis set. The binding energies calculated were corrected for the basis set superposition error at the same level. The result shows that syn 8OXOA:G complex is the most stable among all the complexes. According to energetic analysis, the species and position of substitution of 2′-deoxyadenosine nucleotide significantly influence the stability of conformers. The intermolecular and intramolecular hydrogen bonds (HBs) were characterized based on atoms in molecules theory (AIM) and natural bond orbital (NBO) analysis, indicating that the type and geometry of HB significantly influence the stability of monomer and complex. Furthermore, in most cases, the intramolecular HBs in monomer and complex exhibit similar properties because they own nearly the same geometry and parameters obtained from AIM and NBO analysis.  相似文献   

10.
The role of G protein coupled receptors (GPCRs) in numerous physiological processes that may be disrupted or modified in disease makes them key targets for the development of new therapeutic medicines. A wide variety of resonance energy transfer (RET) techniques such as fluorescence RET and bioluminescence RET have been developed in recent years to detect protein–protein interactions in living cells. Furthermore, these techniques are now being exploited to screen for novel compounds that activate or block GPCRs and to search for new, previously undiscovered signaling pathways activated by well-known pharmacologically classified drugs. The high resolution that can be achieved with these RET methods means that they are well suited to study both intramolecular conformational changes in response to ligand binding at the receptor level and intermolecular interactions involving protein translocation in subcellular compartments resulting from external stimuli. In this review we highlight the latest advances in these technologies to illustrate general principles.  相似文献   

11.
Electrospray (ES) mass spectrometry data is presented showing that agonist binding to the nuclear receptor (NR), retinoid X receptor alpha (RXRalpha), is competitive. The competitive nature of agonist binding can be used to discriminate between the specific and non-specific binding of small lipophilic molecules to NRs. Further, data is presented which show that high-affinity ligand binding to the RXRalpha ligand-binding domain (LBD) stabilises the domain homodimer. The results indicate that homodimerisation, a functional property of the receptor associated with the binding of agonist ligands, could be used to discriminate between specific and non-specific binding events. Additionally, we report on the remarkable stability of the gas-phase complex between the RXRalpha LBD protein and endogenous bile acids. Protein-bile acid interactions in the gas phase were found to be surprisingly strong, withstanding 'in-source' fragmentation in the ES interface, and, in the case of taurocholic acid (TCA) and lithocholic acid-3-sulphate (LCA-3-sulphate), collision-induced dissociation within the collision cell of a tandem mass spectrometer. Bile acids were found to be inactive towards RXRalpha in transfection assays, and have not been reported to be ligands for the RXRalpha, although lithocholic acid (LCA) has been found to be a competitor in the photoaffinity labelling of RXRbeta with 9-cis-retinoic acid (9-cis-RA). The observation of strong RXRalpha-bile acid non-covalent complexes in ES mass spectrometry highlight the danger of extrapolating gas-phase binding data to the solution phase and further to a possible biological activity, particularly when surface-active compounds such as bile acids are involved. The introduction of a competitive ligand-binding experiment can alleviate this problem and allow the differentiation between specific and non-specific binding.  相似文献   

12.
Anion binding to a receptor based on stiff-stilbene, which is equipped with a urea hydrogen bond donating group and a phosphate or phosphinate hydrogen bond accepting group, can be controlled by light. In one photoaddressable state (E isomer) the urea binding site is available for binding, while in the other (Z isomer) it is blocked because of an intramolecular interaction with its hydrogen bond accepting motif. This intramolecular interaction is supported by DFT calculations and 1H NMR titrations reveal a significantly lower anion binding strength for the state in which anion binding is blocked. Furthermore, the molecular switching process has been studied in detail by UV/Vis and NMR spectroscopy. The presented approach opens up new opportunities toward the development of photoresponsive anion receptors.  相似文献   

13.
BACKGROUND: Two deoxysugar glycosyltransferases (GTs), UrdGT1b and UrdGT1c, involved in urdamycin biosynthesis share 91% identical amino acids. However, the two GTs show different specificities for both nucleotide sugar and acceptor substrate. Generally, it is proposed that GTs are two-domain proteins with a nucleotide binding domain and an acceptor substrate site with the catalytic center in an interface cleft between these domains. Our work aimed at finding out the region responsible for determination of substrate specificities of these two urdamycin GTs. RESULTS: A series of 10 chimeric GT genes were constructed consisting of differently sized and positioned portions of urdGT1b and urdGT1c. Gene expression experiments in host strains Streptomyces fradiae Ax and XTC show that nine of 10 chimeric GTs are still functional, with either UrdGT1b- or UrdGT1c-like activity. A 31 amino acid region (aa 52-82) located close to the N-terminus of these enzymes, which differs in 18 residues, was identified to control both sugar donor and acceptor substrate specificity. Only one chimeric gene product of the 10 was not functional. Targeted stepwise alterations of glycine 226 (G226R, G226S, G226SR) were made to reintroduce residues conserved among streptomycete GTs. Alterations G226S and G226R restored a weak activity, whereas G226SR showed an activity comparable with other functional chimeras. CONCLUSIONS: A nucleotide sugar binding motif is present in the C-terminal moiety of UrdGT1b and UrdGT1c from S. fradiae. We could demonstrate that it is an N-terminal section that determines specificity for the nucleotide sugar and also the acceptor substrate. This finding directs the way towards engineering this class of streptomycete enzymes for antibiotic derivatization applications. Amino acids 226 and 227, located outside the putative substrate binding site, might be part of a larger protein structure, perhaps a solvent channel to the catalytic center. Therefore, they could play a role in substrate accessibility to it.  相似文献   

14.
The geometric isotope effect (GIE) of sp- (acetylene-water), sp(2)- (ethylene-water), and sp(3)- (methane-water) hybridized intermolecular C-H...O and C-D...O hydrogen bonds has been analyzed at the HF/6-31++G level by using the multicomponent molecular orbital method, which directly takes account of the quantum effect of proton/deuteron. In the acetylene-water case, the elongation of C-H length due to the formation of the hydrogen bond is found to be greater than that of C-D. In contrast to sp-type, the contraction of C-H length in methane-water is smaller than that of C-D. After the formation of hydrogen bonds, the C-H length itself in all complexes is longer than C-D and the H...O distance is shorter than D...O, similar to the GIE of conventional hydrogen bonds. Furthermore, the exponent (alpha) value is decreased with the formation of the hydrogen bond, which indicates the stabilization of intermolecular C-H...O hydrogen bonds as well as conventional hydrogen bonds. In addition, the geometric difference induced by the H/D isotope effect of the intramolecular C-H...O hydrogen bond shows the same tendency as that of intermolecular C-H...O. Our study clearly demonstrates that C-H...O hydrogen bonds can be categorized as typical hydrogen bonds from the viewpoint of GIE, irrespective of the hybridizing state of carbon and inter- or intramolecular hydrogen bond.  相似文献   

15.
Supramolecular chemistry is intimately linked to the dynamical interplay between intermolecular forces and intramolecular flexibility. Here, we studied the ultrafast equilibrium dynamics of a supramolecular hydrogen-bonded receptor-substrate complex, 18-crown-6 monohydrate, using Fourier transform infrared (FTIR) and two-dimensional infrared (2DIR) spectroscopy in combination with numerical simulations based on molecular mechanics, density functional theory, and transition state theory. The theoretical calculations suggest that the flexibility of the macrocyclic crown ether receptor is related to an ultrafast crankshaft isomerization occurring on a time scale of several picoseconds and that the OH stretching vibrations of the substrate can serve as internal probes for the receptor's flexibility. The importance of population transfer among the vibrational modes of a given binding motif and of chemical exchange between spectroscopically distinguishable binding motifs for shaping the two-dimensional infrared spectrum and its temporal evolution is discussed.  相似文献   

16.
G protein-coupled receptors (GPCRs) are involved in the control of virtually all aspects of our behavior and physiology. Activated receptors catalyze nucleotide exchange in heterotrimeric G proteins (composed of alpha.GDP, beta and gamma subunits) on the inner surface of the cell membrane. The GPCR rhodopsin and the G protein transducin (G(t)) are key proteins in the early steps of the visual cascade. The main receptor interaction sites on G(t) are the C-terminal tail of the G(t)alpha-subunit and the farnesylated C-terminal tail of the G(t)gamma-subunit. Synthetic peptides derived from these C-termini specifically bind and stabilize the active rhodopsin conformation (R*). Here we report the synthesis of R*-interacting peptides containing photo-reactive groups with a specific isotope pattern, which can facilitate detection of cross-linked products by mass spectrometry. In a preliminary set of experiments, we characterized such peptides derived from the farnesylated G(t)gamma C-terminus (G(t)gamma(60-71)far) in terms of their capability to bind R*. Here, we describe novel peptides with photo-affinity labels that bind R* with affinities similar to that of the native G(t)gamma(60-71)far peptide. Such peptides will enable an improved experimental strategy to probe rhodopsin-G(t) interaction and to map so far unknown interaction sites between both proteins.  相似文献   

17.
Membrane binding of a doubly lipid modified heptapeptide from the C-terminus of the human N-ras protein was studied by Fourier transform infrared, solid-state NMR, and neutron diffraction spectroscopy. The 16:0 peptide chains insert well into the 1,2-dimyristoyl-sn-glycero-3-phosphocholine phospholipid matrix. This is indicated by a common main phase transition temperature of 21.5 degrees C for both the lipid and peptide chains as revealed by FTIR measurements. Further, (2)H NMR reveals that peptide and lipid chains have approximately the same chain length in the liquid crystalline state. This is achieved by a much lower order parameter of the 16:0 peptide chains compared to the 14:0 phospholipid chains. Finally, proton/deuterium contrast variation of neutron diffraction experiments indicates that peptide chains are localized in the membrane interior analogous to the phospholipid chains. In agreement with this model of peptide chain insertion, the peptide part is localized at the lipid-water interface of the membrane. This is revealed by (1)H nuclear Overhauser enhancement spectra recorded under magic angle spinning conditions. Quantitative cross-peak analysis allows the examination of the average location of the peptide backbone and side chains with respect to the membrane. While the backbone shows the strongest cross-relaxation rates with the phospholipid glycerol, the hydrophobic side chains of the peptide insert deeper into the membrane interior. This is supported by neutron diffraction experiments that reveal a peptide distribution in the lipid-water interface of the membrane. Concurring with these experimental findings, the amide protons of the peptide show strong water exchange as seen in NMR and FTIR measurements. No indications for a hydrogen-bonded secondary structure of the peptide backbone are found. Therefore, membrane binding of the C-terminus of the N-ras protein is mainly due to lipid chain insertion but also supported by interactions between hydrophobic side chains and the lipid membrane. The peptide assumes a mobile and disordered conformation in the membrane. Since the C-terminus of the soluble part of the ras protein is also disordered, we hypothesize that our model for membrane binding of the ras peptide realistically describes the membrane binding of the lipidated C-terminus of the active ras protein.  相似文献   

18.
In several previous studies, we performed sensitivity analysis to gauge the relative importance of different atomic partial charges in determining protein-ligand binding. In this work, we gain further insights by decomposing these results into three contributions: desolvation, intramolecular interactions, and intermolecular interactions, again based on a Poisson continuum electrostatics model. Three protein kinase-inhibitor systems have been analyzed: CDK2-deschloroflavopiridol, PKA-PKI, and LCK-PP2. Although our results point out the importance of specific intermolecular interactions to the binding affinity, they also reveal the remarkable contributions from the solvent-mediated intramolecular interactions in some cases. Thus, it is necessary to look beyond analyzing protein-ligand interactions to understand protein-ligand recognition or to gain insights into designing ligands and proteins. In analyzing the contributions of the three components to the overall binding free energy, the PKA-PKI system with a much larger ligand was found to behave differently from the other two systems with smaller ligands. In the former case, the intermolecular interactions are very favorable, and together with the favorable solvent-mediated intramolecular interactions, they overcome the large desolvation penalties to give a favorable electrostatics contribution to the overall binding affinity. On the other hand, the other two systems with smaller ligands only present modest intermolecular interactions and they are not or are only barely sufficient to overcome the desolvation penalty even with the aid of the favorable intramolecular contributions. As a result, the binding affinity of these two systems do not or only barely benefit from electrostatics contributions.  相似文献   

19.
Dimerization of the keto tautomer of acetohydroxamic acid has been studied using FTIR matrix isolation spectroscopy and DFT(B3LYP)/6-31+G(d,p) calculations. Analysis of CH3CONHOH/Ar matrix spectra indicates formation of two dimers in which two intramolecular CO...HON bonds within two interacting acetohydroxamic acid molecules are retained. A chain dimer I is stabilized by the intermolecular CO...HN hydrogen bond, whereas the cyclic dimer II is stabilized by two intermolecular NH...O(H)N bonds. Twelve vibrations were identified for dimer I and six vibrations for dimer II; the observed frequency shifts show a good agreement with the calculated ones for the structures I and II. Both dimers have comparable binding energies (DeltaE(ZPE)(CP)I, II=-7.02, -6.34 kcal mol-1) being less stable than calculated structures III and IV (DeltaE(ZPE)(CP)III, IV=-9.50, -8.87 kcal mol-1) in which one or two intramolecular hydrogen bonds are disrupted. In the most stable 10-membered cyclic dimer III, two intermolecular CO...HON hydrogen bonds are formed at expense of intramolecular hydrogen bonds of the same type. The formation of the less stable (AHA)2 dimers in the studied matrixes indicates that the formation of (AHA)2 is kinetically and not thermodynamically controlled.  相似文献   

20.
In the title compound, C30H48NO3+·Cl·H2O, the cation acts with a water molecule as a chloride ion receptor. The chloride ion forms three strong intramolecular hydrogen bonds. The water molecule forms both an intramolecular bridge between one phenol H atom and the chloride ion, and an intermolecular link to the aliphatic alcohol O atom. Weak intermolecular C—H...Cl and C—H ...O hydrogen bonds provide additional packing interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号