首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-pressure Raman scattering studies have been performed on a crystalline energetic material, pentaerythritol tetranitrate C(CH2ONO2)4 (PETN), an important secondary explosive. In situ, ambient-temperature investigations employed diamond anvil cell techniques and nitrogen as a quasi-hydrostatic-pressure-transmitting medium. The pressure-induced alterations in the profiles of the Raman lines, including positions, bandwidths, and intensities, were studied in a compression sequence up to about 31.3 GPa and in a subsequent decompression to ambient conditions. The observed changes of the Raman spectra implied that PETN gradually densified and compressed smoothly up to the highest investigated pressures. Compression below 12 GPa gradually shifted all Raman peaks to higher frequencies without significantly changing their relative intensities or bandwidths. At higher pressures, the peak intensities of the Raman spectra decreased considerably and the bands broadened significantly. The Raman spectrum of the material quenched from 31.3 GPa to ambient conditions indicated that no pressure-driven permanent reconstructive modification or decomposition of the PETN structure occurred. That is, the spectral changes were completely reversible upon compression and subsequent decompression to ambient conditions.  相似文献   

2.
We report an unexpectedly high chemical stability of molecular solid 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) under static high pressures. In contrast to the high-pressure behavior of the majority of molecular solids, TATB remains both chemically stable and an insulator to 150 GPa--well above the predicted metallization pressure of 120 GPa. Single crystal studies have shown that TATB exhibits pressure-induced Raman changes associated with two subtle structural phase transitions at 28 and 56 GPa. These phase transitions are accompanied by remarkable color changes, from yellow to orange and to dark red with increasing pressure. We suggest that the high-stability of TATB arises as a result of its hydrogen-bonded aromatic two-dimensional (2D) layered structure and highly repulsive interlayer interaction, hindering the formation of 3D networks or metallic states.  相似文献   

3.
We have studied cyanuric acid (H(3)C(3)N(3)O(3)) at static pressures up to 8.1 GPa and simultaneous temperatures up to 750 K, using primarily infrared absorption spectroscopy and visual observation. The corresponding phase diagram compares favorably with theoretical predictions of metastable organic materials. Two reactions were observed and characterized; both are irreversible. Below 2 GPa, melting is accompanied by a decomposition reaction, and upon cooling, cyanuric acid is not recovered. Above 2 GPa, heating results in a solid product recoverable at ambient conditions. Corresponding infrared spectra suggest that pressure leads to the formation of heterocycles of increasing complexity and biological potential, with the composition determined by the pressure of formation. Cyanuric acid is of interest at these conditions because it and its monomer, isocyanic acid, are "prebiotic" compounds found in stellar dust clouds, meteorites, and other remnants of the early Earth.  相似文献   

4.
Recently, Dreger et al. experimentally investigated the phase diagram and decomposition of 1,1-diamino-2,2-dinitroethene (FOX-7) single crystal compressed hydrostatically up to 10 GPa and heated over a range of 293–750 K (J. Phys. Chem. C 2016 , 120, 11092–11098). As a continuation, we performed ab initio molecular dynamic simulations to study the initiation mechanisms and subsequent decomposition of FOX-7 at a temperature of 504 K (initial decomposition temperature) coupled with a pressure of 1–5 GPa, 604 K at 5GPa, and 704 K at 5 GPa. However, our two compressing ways are different: the former is static hydrostatical compression, while our way is dynamic compression. Our results indicate that the initial decomposition mechanism was dependent on the temperature but independent of the pressure. The initial decomposition step is the bimolecular intermolecular hydrogen transfer. The subsequent decomposition of FOX-7 is sensitive to both the temperature and pressure. At 504 K, the decomposition of FOX-7 was accelerated from 1 to 2 GPa and from 3 to 5 GPa but decelerated from 2 to 3 GPa. The temperature exhibits a positive effect on the decomposition. Overall, the temperature and pressure have great cooperative effects on the decomposition of FOX-7. Our study may provide new insight into understanding the initial mechanisms and decomposition reactions of energetic materials at relatively low temperatures coupled with different pressures in atomic detail.  相似文献   

5.
We report the pressure‐induced crystallographic transitions and optical behavior of MAPbI3 (MA=methylammonium) using in situ synchrotron X‐ray diffraction and laser‐excited photoluminescence spectroscopy, supported by density functional theory (DFT) calculations using the hybrid functional B3PW91 with spin‐orbit coupling. The tetragonal polymorph determined at ambient pressure transforms to a ReO3‐type cubic phase at 0.3 GPa. Upon continuous compression to 2.7 GPa this cubic polymorph converts into a putative orthorhombic structure. Beyond 4.7 GPa it separates into crystalline and amorphous fractions. During decompression, this phase‐mixed material undergoes distinct restoration pathways depending on the peak pressure. In situ pressure photoluminescence investigation suggests a reduction in band gap with increasing pressure up to ≈0.3 GPa and then an increase in band gap up to a pressure of 2.7 GPa, in excellent agreement with our DFT calculation prediction.  相似文献   

6.
We have determined the melting temperature of formic acid (HCOOH) as a function of pressure to 8.5 GPa using infrared absorption spectroscopy, Raman spectroscopy and visual observation of samples in a resistively heated diamond-anvil cell. The experimentally determined incongruent melting curve compares favorably with a two-phase thermodynamic model. Decomposition reactions were observed above the melting temperature up to a pressure of 6.5 GPa, with principal products being CO2, H2O, and CO. At pressures above 6.5 GPa, decomposition led to reaction products that could be quenched as solids to zero pressure, and infrared and Raman spectra indicate that pressure leads to the presence of sp3 carbon-carbon bonding in these reaction products.  相似文献   

7.
Raman spectroscopic analysis is performed on WO3 nanowires at room temperature at pressures from ambient conditions to 45 GPa. Linear dependence of the first‐order Raman signal on various high‐pressure (HP) sections is observed. Upon increasing the applied pressure, the WO3 nanowires undergo four phase transitions at pressures around 1.7, 4.6, 21.5, and 26.2 GPa, which are all less than that reported for bulk WO3. When the pressure is up to 42.5 GPa, a new high‐pressure phase (HP5) appears. This phase has never been reported and is not reversible while unloading the pressure.  相似文献   

8.
We present a computational study of hydrostatic compression effects on the pentaerythritol tetranitrate (PETN) energetic material up to 22.7 GPa by means of the ab initio all-electron periodic Hartree-Fock quantum mechanical method with the STO-3G Gaussian basis set. We fitted the calculated volume-energy relation to the energy SJEOS polynomial function from which we obtained the compression dependence of the pressure (P), the bulk modulus (B), and its pressure derivative (B'). We also fitted the experimental volume-pressure relation to the pressure SJEOS polynomial function, which allowed us to calculate the experimental bulk modulus (B(exp)) and its pressure derivative (). Our calculated values, B = 6.73 GPa and B' = 24.63, are in reasonable agreement with the values B(exp) = 8.48 GPa and = 14.42 from our fit to the experimental X-ray data and with the value B(exp) = 9.8 GPa that was derived from the experimental elastic constants. In addition, we present a discussion on how the lattice vectors and the internal coordinates (i.e., bond lengths, bond angles, and torsion angles) of the C(CH(2)ONO(2))(4) molecules in the PETN lattice change during hydrostatic compression of the crystal. Our calculated results suggest that the C(CH(2)ONO(2))(4) molecules cannot be considered as being rigid but are in fact flexible, accommodating lattice compression through torsions, bendings in their bond angles, and contractions in their bond lengths. At pressures higher than about 8 GPa, however, both the C(CH(2)ONO(2))(4) molecules and the c lattice vector seem to stiffen somewhat. The a lattice vector does not exhibit this stiffening. As a consequence, the pressure dependence of the c/a ratio shows a minimum at about 8 GPa.  相似文献   

9.
10.
The electronic structure of the single component molecular crystal [Ni(ptdt)(2)] (ptdt = propylenedithiotetrathiafulvalenedithiolate) is determined at ambient and high pressure using density functional theory. The electronic structure of this crystal is found to be of the "crossing bands" type with respect to the dispersion of the HOMO and LUMO, resulting in a small, non-zero density of states at the Fermi energy at ambient pressure, indicating that this crystal is a "poor quality" metal, and is consistent with the crystal's resistivity exhibiting a semiconductor-like temperature dependence. The ambient pressure band structure is found to be predominantly one-dimensional, reflecting enhanced intermolecular interactions along the [100] stacking direction. Our calculations indicate that the band structure becomes two-dimensional at high pressures and reveals the role of shortened intermolecular contacts in this phenomenon. The integrity of the molecular structure is found to be maintained up to at least 22 GPa. The electronic structure is found to exhibit a crossing bands nature up to 22 GPa, where enhanced intermolecular interactions increase the Brillouin zone centre HOMO-LUMO gap from 0.05 eV at ambient pressure to 0.15 eV at 22 GPa; this enhanced HOMO-LUMO interaction ensures that enhancement of a metallic state in this crystal cannot be simply achieved through the application of pressure, but rather requires some rearrangement of the molecular packing. Enhanced HOMO-LUMO interactions result in a small density of states at the Fermi energy for the high pressure window 19.8-22 GPa, and our calculations show that there is no change in the nature of the electronic structure at the Fermi energy for these pressures. We correspondingly find no evidence of an electronic semiconducting-metal insulator transition for these pressures, contrary to recent experimental evidence [Cui et al., J. Am. Chem. Soc. 131, 6358 (2009)].  相似文献   

11.
Atomic force microscopy (AFM) has been successfully used to study the activation energy for evaporation of pentaerythritol tetranitrate (PETN) nanoislands formed by spin coating. These islands are annealed isothermally in the temperature range of 30-70 degrees C for a given time and are scanned with AFM in contact mode at room temperature. The volume of these islands does not change significantly up to about 35-40 degrees C indicating that sublimation is not significant below 40 degrees C. Above 40 degrees C, the islands start shrinking, and the rate of weight loss is analyzed as a function of temperature. The activation energy of evaporation using AFM was found to be similar to that for bulk PETN crystals using thermogravimetric analysis (TGA) at higher temperatures (110-135 degrees C). These results demonstrate that AFM is a useful tool to measure thermodynamic properties with a nanoscale probe.  相似文献   

12.
High-pressure Raman scattering studies at ambient temperature are performed on n-heptane. We observe a liquid-solid transition around 1.5 GPa from the changes in the Raman spectra. This has been reported in earlier works. With increasing pressure, we observe large changes in the Raman modes and the spectra show a distinct change around 7.5 GPa. This marks the solid-solid transition at 7.5 GPa observed in n-heptane for the first time. As predicted in theoretical work, we observe dampening of methyl rotation in n-heptane below 7.5 GPa. With increase in pressure above 7.5 GPa we observe a definitive conversion of gauche to trans conformation in the solid phase. Upon release of pressure we do not observe any hysteresis, which suggests that the solid-solid transition takes place with no volume change or is a second-order transition. In this paper we propose this transition to be an orientational order-disorder transition driven by the dampening of the rotation of the methyl group.  相似文献   

13.
A pressure-induced splitting of the Cu-O chains was found in SrCuO2 at pressures >7 GPa and room temperature. The high-pressure phase is a superstructure of the infinite-layered tetragonal superconducting phase of SrCuO2 and is not stable under ambient conditions. The Cu-O chains buckle with further increasing pressure, and a new high-density polymorph of SrCuO2 is formed at 34.2 GPa.  相似文献   

14.
The crystal structures of bis(3-fluoro-salicylaldoximato)nickel(II) and bis(3-methoxy-salicylaldoximato)nickel(II) have been determined at room temperature between ambient pressure and approximately 6?GPa. The principal effect of pressure is to reduce intermolecular contact distances. In the fluoro system molecules are stacked, and the Ni???Ni distance decreases from 3.19?? at ambient pressure to 2.82?? at 5.4?GPa. These data are similar to those observed in bis(dimethylglyoximato)nickel(II) over a similar pressure range, though contrary to that system, and in spite of their structural similarity, the salicyloximato does not become conducting at high pressure. Ni-ligand distances also shorten, on average by 0.017 and 0.011?? for the fluoro and methoxy complexes, respectively. Bond compression is small if the bond in question is directed towards an interstitial void. A band at 620?nm, which occurs in the visible spectrum of each derivative, can be assigned to a transition to an antibonding molecular orbital based on the metal 3d(x(2)-y(2)) orbital. Time-dependent density functional theory calculations show that the energy of this orbital is sensitive to pressure, increasing in energy as the Ni-ligand distances are compressed, and consequently increasing the energy of the transition. The resulting blueshift of the UV-visible band leads to piezochromism, and crystals of both complexes, which are green at ambient pressure, become red at 5?GPa.  相似文献   

15.
The bromo-substituted bisdiselenazolyl radical 4b (R(1) = Et, R(2) = Br) is isostructural with the corresponding chloro-derivative 4a (R(1) = Et, R(2) = Cl), both belonging to the tetragonal space group P(4)2(1)m and consisting of slipped π-stack arrays of undimerized radicals. Variable temperature, ambient pressure conductivity measurements indicate a similar room temperature conductivity near 10(-4) S cm(-1) for the two compounds, but 4b displays a slightly higher thermal activation energy E(act) (0.23 eV) than 4a (0.19 eV). Like 4a, radical 4b behaves as a bulk ferromagnet with an ordering temperature of T(C) = 17.5 K. The coercive field H(c) (at 2 K) of 1600 Oe for 4b is, however, significantly greater than that observed for 4a (1370 Oe). High pressure (0-15 GPa) structural studies on both compounds have shown that compression reduces the degree of slippage of the π-stacks, which gives rise to changes in the magnetic and conductive properties of the radicals. Relatively mild loadings (<2 GPa) cause an increase in T(C) for both compounds, that of 4b reaching a maximum value of 24 K; further compression to 5 GPa leads to a decrease in T(C) and loss of magnetization. Variable temperature and pressure conductivity measurements indicate a decrease in E(act) with increasing pressure, with eventual conversion of both compounds from a Mott insulating state to one displaying weakly metallic behavior in the region of 7 GPa (for 4a) and 9 GPa (for 4b).  相似文献   

16.
Crystal structure of nitromethane up to the reaction threshold pressure   总被引:1,自引:0,他引:1  
Angle dispersion X-ray diffraction (AXDX) experiments on nitromethane single crystals and powder were performed at room temperature as a function of pressure up to 19.0 and 27.3 GPa, respectively, in a membrane diamond anvil cell (MDAC). The atomic positions were refined at 1.1, 3.2, 7.6, 11.0, and 15.0 GPa using the single-crystal data, while the equation of state (EOS) was extended up to 27.3 GPa, which is close to the nitromethane decomposition threshold pressure at room temperature in static conditions. The crystal structure was found to be orthorhombic, space group P2(1)2(1)2(1), with four molecules per unit cell, up to the highest pressure. In contrast, the molecular geometry undergoes an important change consisting of a gradual blocking of the methyl group libration about the C-N bond axis, starting just above the melting pressure and completed only between 7.6 and 11.0 GPa. Above this pressure, the orientation of the methyl group is quasi-eclipsed with respect to the NO bonds. This conformation allows the buildup of networks of strong intermolecular O...H-C interactions mainly in the bc and ac planes, stabilizing the crystal structure. This structural evolution determines important modifications in the IR and Raman spectra, occurring around 10 GPa. Present measurements of the Raman and IR vibrational spectra as a function of pressure at different temperatures evidence the existence of a kinetic barrier for this internal rearrangement.  相似文献   

17.
Broadband dielectric relaxation measurements of tris(dimethylsiloxy)phenylsilane were made at ambient pressure and at elevated pressures. The data show an anomalous behavior not previously seen in any other glass-formers; namely, the structural alpha-relaxation loss peak narrows with increasing pressure and temperature at constant peak frequency. Interpreted by the coupling model, the effect is due to reduction of intermolecular coupling at elevated pressures. This interpretation has support from the observed decrease of the separation between the alpha-relaxation and the Johari-Goldstein secondary relaxation, as well as the smaller steepness or "fragility" index m of the data obtained at 1.7 GPa than at ambient pressure.  相似文献   

18.
The high-pressure reactivity of isoprene has been studied at room temperature up to 2.6 GPa by using the diamond anvil cell technique in combination with Fourier transform infrared spectroscopy. Both dimerization and polymerization reactions take place above 1.1 GPa. At this pressure, the two processes are well separated in time, the dimerization being the only one occurring in the first 150 h. Both processes simultaneously occur as the pressure increases. The reaction product is composed of a volatile fraction, identified as sylvestrene, and a transparent rubberlike solid formed by cis-1,4- and 3,4-polyisoprene. The activation volume of the dimerization reaction has been obtained from the kinetic data. The photoinduced reaction, studied at room temperature for two different pressures, takes place through a two-photon absorption process, and the threshold pressure is lowered to 0.5 GPa. At this pressure, both the dimerization and polymerization processes occur, but the dimerization is not as selective as in the purely pressure-induced reaction. 4-Ethenyl-2,4-dimethylcyclohexene is obtained in addition to sylvestrene. By increasing the pressure, the photoinduced reaction becomes more selective, and the monomer is quantitatively transformed into the same polymer obtained in the purely pressure-induced reaction.  相似文献   

19.
We performed ab initio molecular dynamics simulations to investigate initial decomposition mechanisms and subsequent chemical processes of β‐HMX (cyclotetramethylene tetranitramine) (octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine) crystals at high temperature coupled with high pressures. It was found that the initial decomposition step is the simultaneous C–H and N–NO2 bond cleavage at 3,500 K. When the pressure (1–10 GPa) is applied, the first reaction steps are primarily the C–N and C–H bond fission at 3,500 K. The C–H bond cleavage is a triggering decomposition step of the HMX crystals at 3,500 K coupled with 16 GPa. This indicates that the C–H bonds are much easier to be broken and the hydrogen radicals are much more active. The applied pressures (1–10 GPa) accelerate the decompositions of HMX at 3,500 K. The decomposition pathways and time evolution of the main chemical species demonstrate that the temperature is the foremost factor that affects the decomposition at high pressures (1–10 GPa). However, the decomposition of HMX is dependent on both the temperature (3,500 K) and the pressure (16 GPa). This work will enrich the knowledge of the decompositions of condensed energetic materials under extreme conditions.  相似文献   

20.
The high-pressure angle-dispersive X-ray diffraction experiments on the iron-based superconductor Nd(O0.88F0.12)FeAs were performed up to 32.7 GPa at room temperature. An isostructural phase transition starts at approximately 10 GPa. When pressure is higher than 13.5 GPa, Nd(O0.88F0.12)FeAs completely transforms to a high-pressure phase, which remains the same tetragonal structure with a larger a-axis and smaller c-axis than those of the low-pressure phase. The ambient conditions isothermal bulk moduli B0 are derived as 102(2) and 245(9) GPa for the low-pressure phase and high-pressure phase, respectively. The structure analysis based on the Rietveld refinement methods shows the difference of pressure dependence of the Fe-As and Nd-(O, F) bonding distances, as well as As-Fe-As and Nd-(O, F)-Nd angles between the low-pressure phase and high-pressure phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号