首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We extend the concept of an entanglement spectrum from the geometrical to the particle bipartite partition. We apply this to several fractional quantum Hall wave functions on both sphere and torus geometries to show that this new type of entanglement spectra completely reveals the physics of bulk quasihole excitations. While this is easily understood when a local Hamiltonian for the model state exists, we show that the quasihole wave functions are encoded within the model state even when such a Hamiltonian is not known. As a nontrivial example, we look at Jain's composite fermion states and obtain their quasiholes directly from the model state wave function. We reach similar conclusions for wave functions described by Jack polynomials.  相似文献   

3.
The Jain's composite fermion wavefunction has proven quite succesful to describe most of the fractional quantum Hall states. Its mathematical foundation lies in the Chern-Simons field theory for the electrons in the lowest Landau level, despite the fact that such wavefunction is different from a typical mean-field level Chern-Simons wavefunction. It is known that the energy excitation gaps for fractional Hall states described by Jain's composite fermion wavefunction cannot be calculated analytically. We note that analytic results for the energy excitation gaps of fractional Hall states described by a fermion Chern-Simons wavefunction are readily obtained by using a technique originating from nuclear matter studies. By adopting this technique to the fractional quantum Hall effect we obtained analytical results for the excitation energy gaps of all fractional Hall states described by a Chern-Simons wavefunction. Received 9 March 2001  相似文献   

4.
We propose a pseudo-potential Hamiltonian for the Zhang-Hu’s generalized fractional quantum Hall states to be the exact and unique ground states. Analogously to Laughlin’s quasi-hole (quasi-particle), the excitations in the generalized fractional quantum Hall states are extended objects. They are vortex-like excitations with fractional charges +(−)1/m3 in the total configuration space CP3. The density correlation function of the Zhang-Hu states indicates that they are incompressible liquid.  相似文献   

5.
We describe a method to create fractional quantum Hall states of atoms confined in optical lattices. We show that the dynamics of the atoms in the lattice is analogous to the motion of a charged particle in a magnetic field if an oscillating quadrupole potential is applied together with a periodic modulation of the tunneling between lattice sites. In a suitable parameter regime the ground state in the lattice is of the fractional quantum Hall type, and we show how these states can be reached by melting a Mott-insulator state in a superlattice potential. Finally, we discuss techniques to observe these strongly correlated states.  相似文献   

6.
We report on the dramatic evolution of the quantum Hall ferromagnet in the fractional quantum Hall regime at nu=2/5 filling. A large enhancement in the characteristic time scale gives rise to a dynamical transition into a novel quantized Hall state. The observed Hall state is determined to be a zero-temperature phase distinct from the spin-polarized and spin-unpolarized nu=2/5 fractional quantum Hall states. It is characterized by a strong temperature dependence and puzzling correlation between temperature and time.  相似文献   

7.
We calculate a topological invariant, whose value would coincide with the Chern number in the case of integer quantum Hall effect, for fractional quantum Hall states. In the case of Abelian fractional quantum Hall states, this invariant is shown to be equal to the trace of the K-matrix. In the case of non-Abelian fractional quantum Hall states, this invariant can be calculated on a case by case basis from the conformal field theory describing these states. This invariant can be used, for example, to distinguish between different fractional Hall states numerically even though, as a single number, it cannot uniquely label distinct states.  相似文献   

8.
Using the Calogero model as an example, we show that the transport in interacting nondissipative electronic systems is essentially nonlinear and unstable. Nonlinear effects are due to the curvature of the electronic spectrum near the Fermi energy. As is typical for nonlinear systems, a propagating semiclassical wave packet develops a shock wave at a finite time. A wave packet collapses into oscillatory features which further evolve into regularly structured localized pulses carrying a fractionally quantized charge. The Calogero model can be used to describe fractional quantum Hall edge states. We discuss perspectives of observation of quantum shock waves and a direct measurement of the fractional charge in fractional quantum Hall edge states.  相似文献   

9.
Recently, Jack polynomials have been proposed as natural generalizations of ZkZk Read–Rezayi states describing non-Abelian fractional quantum Hall systems. These polynomials are conjectured to be related to correlation functions of a class of W-conformal field theories based on the Lie algebra Ak1Ak1. These theories can be considered as non-unitary solutions of a more general series of CFTs with ZkZk symmetry, the parafermionic theories. Starting from the observation that some parafermionic theories admit unitary solutions as well, we show, by computing the corresponding correlation functions, that these theories provide trial wavefunctions which satisfy the same clustering properties as the non-unitary ones. We show explicitly that, although the wavefunctions constructed by unitary CFTs cannot be expressed as a single Jack polynomial, they still show a fine structure where the mathematical properties of the Jack polynomials play a major role.  相似文献   

10.
We show that for Jack parameter α = ?(k + 1)/(r ? 1), certain Jack polynomials studied by Feigin–Jimbo–Miwa–Mukhin vanish to order r when k + 1 of the coordinates coincide. This result was conjectured by Bernevig and Haldane, who proposed that these Jack polynomials are model wavefunctions for fractional quantum Hall states. Special cases of these Jack polynomials include the wavefunctions of Laughlin and Read–Rezayi. In fact, along these lines we prove several vanishing theorems known as clustering properties for Jack polynomials in the mathematical physics literature, special cases of which had previously been conjectured by Bernevig and Haldane. Motivated by the method of proof, which in the case r = 2 identifies the span of the relevant Jack polynomials with the S n -invariant part of a unitary representation of the rational Cherednik algebra, we conjecture that unitary representations of the type A Cherednik algebra have graded minimal free resolutions of Bernstein–Gelfand–Gelfand type; we prove this for the ideal of the (k + 1)-equals arrangement in the case when the number of coordinates n is at most 2k + 1. In general, our conjecture predicts the graded S n -equivariant Betti numbers of the ideal of the (k + 1)-equals arrangement with no restriction on the number of ambient dimensions.  相似文献   

11.
Applications of conformal field theory to the theory of fractional quantum Hall systems are discussed. In particular, Laughlin's wave function and its cousins are interpreted as conformal blocks in certain rational conformal field theories. Using this point of view a hamiltonian is constructed for electrons for which the ground state is known exactly and whose quasihole excitations have nonabelian statistics; we term these objects “nonabelions”. It is argued that universality classes of fractional quantum Hall systems can be characterized by the quantum numbers and statistics of their excitations. The relation between the order parameter in the fractional quantum Hall effect and the chiral algebra in rational conformal field theory is stressed, and new order parameters for several states are given.  相似文献   

12.
13.
Most states of the fractional quantum Hall effect may be interpreted in terms of an integral quantum Hall effect of weakly-interacting quasiparticles (composite fermions). The recently discovered state does not belong to these states because its formation is due to the residual interactions between composite fermions, which become relevant when the composite-fermion levels are only partially filled. We have derived a model of interacting composite fermions, which reveals the self-similarity of the fractional quantum Hall effect and which allows for a systematic study of higher generations of composite fermions. Here, we derive the form of the interaction potential between these hierarchical composite fermions and provide some stability criteria for such states.  相似文献   

14.
Topological insulators can be generally defined by a topological field theory with an axion angle θ of 0 or π. In this work, we introduce the concept of fractional topological insulator defined by a fractional axion angle and show that it can be consistent with time reversal T invariance if ground state degeneracies are present. The fractional axion angle can be measured experimentally by the quantized fractional bulk magnetoelectric polarization P?, and a "halved" fractional quantum Hall effect on the surface with Hall conductance of the form σH=p/q e2/2h with p, q odd. In the simplest of these states the electron behaves as a bound state of three fractionally charged "quarks" coupled to a deconfined non-Abelian SU(3) "color" gauge field, where the fractional charge of the quarks changes the quantization condition of P? and allows fractional values consistent with T invariance.  相似文献   

15.
The low-energy physics of the fractional Hall liquid is described in terms of quasiparticles that are qualitatively distinct from electrons. We show, however, that a long-lived electronlike quasiparticle also exists in the excitation spectrum: the state obtained by the application of an electron creation operator to a fractional quantum Hall ground state has a nonzero overlap with a complex, high energy bound state containing an odd number of composite-fermion quasiparticles. The electron annihilation operator similarly couples to a bound complex of composite-fermion holes. We predict that these bound states can be observed through a conductance resonance in experiments involving a tunneling of an external electron into the fractional quantum Hall liquid. A comment is made on the origin of the breakdown of the Fermi liquid paradigm in the fractional Hall liquid.  相似文献   

16.
Using the hierarchy picture of the fractional quantum Hall effect, we study the ground-state periodicity of a finite size quantum Hall droplet in a quantum Hall fluid of a different filling factor. The droplet edge charge is periodically modulated with flux through the droplet and will lead to a periodic variation in the conductance of a nearby point contact, such as occurs in some quantum Hall interferometers. Our model is consistent with experiment and predicts that superperiods can be observed in geometries where no interfering trajectories occur. The model may also provide an experimentally feasible method of detecting elusive neutral modes and otherwise obtaining information about the microscopic edge structure in fractional quantum Hall states.  相似文献   

17.
The elementary excitations of fractional quantum Hall (FQH) fluids are vortices with fractional statistics. Yet, this fundamental prediction has remained an open experimental challenge. Here we show that the cross-current noise in a three-terminal tunneling experiment of a two dimensional electron gas in the FQH regime can be used to detect directly the statistical angle of the excitations of these topological quantum fluids. We show that the noise also reveals signatures of exclusion statistics and of fractional charge. The vortices of Laughlin states should exhibit a bunching effect, while for higher states in the Jain sequences they should exhibit an "antibunching" effect.  相似文献   

18.
19.
We study lattice models of charged particles in uniform magnetic fields. We show how longer range hopping can be engineered to produce a massively degenerate manifold of single-particle ground states with wave functions identical to those making up the lowest Landau level of continuum electrons in a magnetic field. We find that in the presence of local interactions, and at the appropriate filling factors, Laughlin's fractional quantum Hall wave function is an exact many-body ground state of our lattice model. The hopping matrix elements in our model fall off as a Gaussian, and when the flux per plaquette is small compared to the fundamental flux quantum one only needs to include nearest and next-nearest neighbor hoppings. We suggest how to realize this model using atoms in optical lattices, and describe observable consequences of the resulting fractional quantum Hall physics.  相似文献   

20.
Most of the fractions observed to date belong to the sequences nu=n/(2pn+/-1) and nu=1-n/(2pn+/-1), n and p integers, understood as the familiar integral quantum Hall effect of composite fermions. These sequences fail to accommodate, however, many fractions such as nu=4/11 and 5/13, discovered recently in ultrahigh mobility samples at very low temperatures. We show that these "next generation" fractional quantum Hall states are accurately described as the fractional quantum Hall effect of composite fermions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号