首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
We review our recent theoretical advances in phase transition of cold atoms in optical lattices, such as triangular lattice, honeycomb lattice, and Kagomé lattice. By employing the new developed numerical methods called dynamical cluster approximation and cellular dynamical mean-field theory, the properties in different phases of cold atoms in optical lattices are studied, such as density of states, Fermi surface and double occupancy. On triangular lattice, a reentrant behavior of phase translation line between Fermi liquid state and pseudogap state is found due to the Kondo effect. We find the system undergoes a second order Mott transition from a metallic state into a Mott insulator state on honeycomb lattice and triangular Kagomé lattice. The stability of quantum spin Hall phase towards interaction on honeycomb lattice with spin-orbital coupling is systematically discussed. And we investigate the transition from quantum spin Hall insulator to normal insulator in Kagomé lattice which includes a nearest-neighbor intrinsic spin-orbit coupling and a trimerized Hamiltonian. In addition, we propose the experimental protocols to observe these phase transition of cold atoms in optical lattices.  相似文献   

2.
We report the observation of vortex pinning in rotating gaseous Bose-Einstein condensates. Vortices are pinned to columnar pinning sites created by a corotating optical lattice superimposed on the rotating Bose-Einstein condensates. We study the effects of two types of optical lattice: triangular and square. In both geometries we see an orientation locking between the vortex and the optical lattices. At sufficient intensity the square optical lattice induces a structural crossover in the vortex lattice.  相似文献   

3.
The Fraunhofer diffraction pattern of a vortex beam by an annular triangle aperture is analyzed theoretically and experimentally. It is found that the pattern of the far-field diffraction intensity distribution exhibits a triangular lattice array, which becomes much clearer with the increase of the ratio of the inner to the outer side of the annular triangle aperture. The number of spot points of any external side of the triangular lattice array minus one is just equal to the topological charge value of the measured optical vortex. For the vortex beam with negative topological charge, the triangular diffraction pattern after the annular triangle aperture will be rotated by 180° in relation to the case of the positive topological charge. Based on the above properties, we propose a simple and feasible method to determine the magnitude and sign of the topological charge of an optical vortex beam.  相似文献   

4.
We study the four-state antiferromagnetic Potts model on the triangular lattice. We show that the model has six types of defects which diffuse and annihilate according to certain conservation laws consistent with their having a vector-valued topological charge. Using the properties of these defects, we deduce a (2+2)-dimensional height representation for the model and hence show that the model is equivalent to the three-state Potts antiferromagnet on the Kagomé lattice and to bond-coloring models on the triangular and honeycomb lattices. We also calculate critical exponents for the ground-state ensemble of the model. We find that the exponents governing the spin–spin correlation function and spin fluctuations violate the Fisher scaling law because of constraints on path length which increase the effective wavelength of the spin operator on the height lattice. We confirm our predictions by extensive Monte Carlo simulations of the model using the Wang–Swendsen–Kotecký cluster algorithm. Although this algorithm is not ergodic on lattices with toroidal boundary conditions, we prove that it is ergodic on lattices whose topology has no noncontractible loops of infinite order, such as the projective plane. To guard against biases introduced by lack of ergodicity, we perform our simulations on both the torus and the projective plane.  相似文献   

5.
We reveal the existence of asymmetric vortex solitons in ideally symmetric periodic lattices and show how such nonlinear localized structures describing elementary circular flows can be analyzed systematically using the energy-balance relations. We present the examples of rhomboid, rectangular, and triangular vortex solitons on a square lattice and also describe novel coherent states where the populations of clockwise and anticlockwise vortex modes change periodically due to a nonlinearity-induced momentum exchange through the lattice. Asymmetric vortex solitons are expected to exist in different nonlinear lattice systems, including optically induced photonic lattices, nonlinear photonic crystals, and Bose-Einstein condensates in optical lattices.  相似文献   

6.
In this Letter, we investigate the effects of dipole-dipole interactions on the vortex lattices in fast rotating Bose-Einstein condensates. For single planar condensate, we show that the triangular lattice structure will be unfavorable when the s-wave interaction is attractive and exceeds a critical value. It will first change to a square lattice, and then become more and more flat with the increase of s-wave attraction, until the collapse of the condensate. For an array of coupled planar condensates, we discuss how the dipole-dipole interactions between neighboring condensates compete with quantum tunneling processes, which affects the relative displacement of two neighboring vortex lattices and leads to the loss of phase coherence between different condensates.  相似文献   

7.
8.
In order to analyse the lattice dependence of ferromagnetism in the two-dimensional Hubbard model we investigate the instability of the fully polarised ferromagnetic ground state (Nagaoka state) on the triangular, honeycomb and kagome lattices. We mainly focus on the local instability, applying single spin flip variational wave functions which include majority spin correlation effects. The question of global instability and phase separation is addressed in the framework of Hartree-Fock theory. We find a strong tendency towards Nagaoka ferromagnetism on the non-bipartite lattices (triangular, kagome) for more than half filling. For the triangular lattice we find the Nagaoka state to be unstable above a critical density of n = 1.887 at U = ∞, thereby significantly improving former variational results. For the kagome lattice the region where ferromagnetism prevails in the phase diagram widely exceeds the flat band regime. Our results even allow the stability of the Nagaoka state in a small region below half filling. In the case of the bipartite honeycomb lattice several disconnected regions are left for a possible Nagaoka ground state.  相似文献   

9.
We demonstrate the possibility of creating and controlling an ideal and trimerized optical Kagomé lattice, and study the low temperature physics of various atomic gases in such lattices. In the trimerized Kagomé lattice, a Bose gas exhibits a Mott transition with fractional filling factors, whereas a spinless interacting Fermi gas at 2/3 filling behaves as a quantum magnet on a triangular lattice. Finally, a Fermi-Fermi mixture at half-filling for both components represents a frustrated quantum antiferromagnet with a resonating-valence-bond ground state and quantum spin liquid behavior dominated by a continuous spectrum of singlet and triplet excitations. We discuss the method of preparing and observing such a quantum spin liquid employing molecular Bose condensates.  相似文献   

10.
We formulate a U(1) gauge theory of the Hubbard model in the slave-rotor representation. From this formalism it is argued that spin liquid phases may exist near the Mott transition in the Hubbard model on triangular and honeycomb lattices at half filling. The organic compound kappa-(BEDT-TTF)2Cu2(CN)3 is a good candidate for the spin liquid state on a triangular lattice. We predict a highly unusual temperature dependence for the thermal conductivity of this material.  相似文献   

11.
Yan Chen  Jinwu Ye 《哲学杂志》2013,93(35):4484-4491
A duality transformation in quantum field theory is usually established first through partition functions. It is always important to explore the dual relations between various correlation functions in the transformation. Here, we explore such a dual relation to study quantum phases and phase transitions in an extended boson Hubbard model at 1/3 (2/3) filling on a triangular lattice. We develop systematically a simple and effective way to use the vortex degrees of freedom on dual lattices to characterize both the density wave and valence bond symmetry breaking patterns of the boson insulating states in the direct lattices. In addition to a checkerboard charge density wave (X-CDW) and a stripe CDW, we find a novel CDW-VBS phase which has both local CDW and local valence bond solid (VBS) orders. Implications for Quantum Monte Carlo simulations are addressed. The possible experimental realizations of cold atoms loaded on optical lattices are discussed.  相似文献   

12.
Using a mean-field theory based upon Hartree-Fock approximation, we theoretically investigate the competition between the metallic conductivity, spin order and charge order phases in a two-dimensional half-filled extended Hubbard model on anisotropic triangular lattice. Bond order, double occupancy, spin and charge structure factor are calculated, and the phase diagram of the extended Hubbard model is presented. It is found that the interplay of strong interaction and geometric frustration leads to exotic phases, the charge fluctuation is enhanced and three kinds of charge orders appear with the introduction of the nearest-neighbor interaction. Moreover, for different frustrations, it is also found that the antiferromagnetic insulating phase and nonmagnetic insulating phase are rapidly suppressed, and eventually disappeared as the ratio between the nearest-neighbor interaction and on-site interaction increases. This indicates that spin order is also sensitive to the nearest-neighbor interaction. Finally, the single-site entanglement is calculated and it is found that a clear discontinuous of the single-site entanglement appears at the critical points of the phase transition.  相似文献   

13.
A triangular aperture illuminated with a vortex beam creates a truncated lattice diffraction pattern that identifies the charge of the vortex. In this Letter, we demonstrate the measurement of vortex charge via this approach for vortex beams up to charge ±7. We also demonstrate the use of this technique for measuring femtosecond vortices and noninteger vortices, comparing these results with numerical modeling. It is shown that this technique is simple and reliable, but care must be taken when interpreting the results for the noninteger case.  相似文献   

14.
Stage-2 CoCl2-GIC approximates a two-dimensional easy-plane (XY) ferromagnet on a triangular lattice. It has been found in prior work to order in two steps, with the intermediate phase showing long-ranged ferromagnetic correlations within the intercalate plane, but no correlations between neighboring planes. We have probed the wave vector and temperature dependence of the static and dynamic spin correlations in detail, including measurements of the critical scattering, the quasielastic scattering from vortex diffusion and the spin wave excitations with and without an external magnetic field. Some of the predictions for a Kosterlitz-Thouless type transition are met in this compound, at least qualitatively, including an apparent jump in the spin stiffness at the critical point and the existence of a diffusive central peak in the scattering function possibly originating from vortex autocorrelations. However, there are some inconsistencies between our observations and recent analytical studies as well as Monte Carlo-molecular dynamics simulations of the vortex dynamics that prevent unambigous assignment of the upper critical temperature as a vortex-binding transition.  相似文献   

15.
We report on the observation of two types of current driven transitions in metastable vortex lattices. The metastable states, which are missed in usual slow transport measurements, are detected with a fast transport technique in the vortex lattice of undoped 2H-NbSe2. The transitions are seen by following the evolution of these states when driven by a current. At low currents we observe an equilibration transition from a metastable to a stable state, followed by a dynamic crystallization transition at high currents.  相似文献   

16.
The novel vortex phase and nature of the double transition field are investigated by two-component Ginzburg-Landau theory in a situation where fourfold-twofold symmetric superconducting double transition occurs. The deformation from 60 degrees triangular vortex lattice and a possibility of the vortex sheet structure are discussed. In the presence of the gradient coupling, the transition changes to a crossover at finite field. These characters are important to identify the multiple superconducting phase in PrOs4Sb12.  相似文献   

17.
We address the existence of vortex solitons supported by azimuthally modulated lattices and reveal how the global lattice discrete symmetry has fundamental implications on the possible topological charges of solitons. We set a general "charge rule" using group-theory techniques, which holds for all lattices belonging to a given symmetry group. Focusing on the case of Bessel lattices allows us to derive also an overall stability rule for the allowed vortex solitons.  相似文献   

18.
We analyze the rhombic to square vortex lattice phase transition in anisotropic superconductors using a variant of Ginzburg-Landau theory. The mean-field phase diagram is determined to second order in the anisotropy parameter, and shows a reorientation transition of the square vortex lattice with respect to the crystal lattice. We then derive the long-wavelength elastic moduli of the lattices, and use them to show that thermal fluctuations produce a reentrant rhombic to square lattice transition line, similar to recent studies which used a nonlocal London model.  相似文献   

19.
We investigate the structure of vortex states in rotating two-component Bose-Einstein condensates with equal intracomponent but varying intercomponent-coupling constants. A phase diagram in the intercomponent-coupling versus rotation-frequency plane reveals rich equilibrium structures of vortex states. As the ratio of intercomponent to intracomponent couplings increases, the interlocked vortex lattices undergo phase transitions from triangular to square, to double-core lattices, and eventually develop interwoven "serpentine" vortex sheets with each component made up of chains of singly quantized vortices.  相似文献   

20.
We discuss recent progress in extracting the excited meson spectrum and radiative transition form factors from lattice QCD.We mention results in the charmonium sector,including the first lattice QCD calculation of radiative transition rates involving excited charmonium states,highlighting results for high spin and exotic states.We present recent results on a highly excited isovector meson spectrum from dynamical anisotropic lattices.Using carefully constructed operators we show how the continuum spin of extracted states can be reliably identified and confidently extract excited states,states with exotic quantum numbers and states of high spin.This spectrum includes the first spin-four state extracted from lattice QCD.We conclude with some comments on future prospects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号