首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermodynamic properties of superconducting Dirac electronic systems is analyzed in the vicinity of quantum critical point. The system is characterized by a quantum critical point at zero doping, such that the critical temperature vanishes below some finite value of interaction strength. It is found that the specific heat jump of the system largely deviates from the conventional BCS theory value in the vicinity of quantum critical point. We investigated the region of applicability of the mean-field theory using the Ginzburg-Landau functional.  相似文献   

2.
3.
We consider dilute magnetic doping in the surface of a three dimensional topological insulator where a two dimensional Dirac electron gas resides. We find that exchange coupling between magnetic atoms and the Dirac electrons has a strong and peculiar effect on both. First, the exchange-induced single ion magnetic anisotropy is very large and favors off-plane orientation. In the case of a ferromagnetically ordered phase, we find a colossal magnetic anisotropy energy, of the order of the critical temperature. Second, a persistent electronic current circulates around the magnetic atom and, in the case of a ferromagnetic phase, around the edges of the surface.  相似文献   

4.
We study the Casimir problem for a fermion coupled to a static background field in one space dimension. We examine the relationship between interactions and boundary conditions for the Dirac field. In the limit that the background becomes concentrated at a point (a “Dirac spike”) and couples strongly, it implements a confining boundary condition. We compute the Casimir energy for a masslike background and show that it is finite for a stepwise continuous background field. However the total Casimir energy diverges for the Dirac spike. The divergence cannot be removed by standard renormalization methods. We compute the Casimir energy density of configurations where the background field consists of one or two sharp spikes and show that the energy density is finite except at the spikes. Finally we define and compute an interaction energy density and the force between two Dirac spikes as a function of the strength and separation of the spikes.  相似文献   

5.
Phonon-exchange-induced superconducting pairing of effectively ultrarelativistic electrons in graphene is investigated. The Eliashberg equation obtained for describing pairing in the Cooper channel with allowance for delayed interaction are matrix equations with indices corresponding to the valence and conduction bands. The equations are solved in the high doping limit, in which pairing is effectively a single-band process, and in the vicinity of a critical quantum point of underdoped graphene for a value of the coupling constant for which pairing is an essentially multiband process. For such cases, analytic estimates are obtained for the superconducting transition temperature of the system. It is shown that the inclusion of dynamic effects makes it possible to determine the superconducting transition temperature, as well as the critical coupling constant for underdoped graphene, more accurately than in the static approximation of the BCS type. Estimates of the constants of electron interaction with the scalar optical phonon mode in graphene indicate that an appreciable superconducting transition temperature can be attained under a high chemical doping level of graphene.  相似文献   

6.
We investigate the effect of superconducting and excitonic interactions, as well as their competition, on Dirac electrons on a bipartite planar lattice. It is shown that, at half-filling, Cooper pairs and excitons coexist if the superconducting and excitonic coupling parameters are equal and above a threshold corresponding to a quantum critical point. In the case where only the excitonic interaction is present, we obtain a critical chemical potential, as a function of the interaction strength. Conversely, if only the superconducting interaction is considered, we show that the superconducting gap displays a characteristic dome as charge carriers are doped into the system. We also show that, as the chemical potential increases, superconductivity tends to suppress the excitonic order parameter.  相似文献   

7.
We investigate the physical properties of massive Dirac fermions in SrMnSb2 using transport, specific heat, electronic structure calculations, and Shubnikov-de Haas (SdH) oscillations. SrMnSb2 is a candidate Dirac antiferromagnet, consisting of the MnSb layers and the distorted square net of Sb atoms with a zigzag chain structure. This structural distortion leads to gap opening at the band crossing point found in the square lattice of the sister compound SrMnBi2 but leaves another Dirac band crossing near the Brillouin zone boundary. The small 2D Fermi surface with a light electron mass and a small Fermi energy is confirmed by the large resistivity anisotropy, the large Seebeck coefficient, and also the angle and temperature dependent SdH oscillations. The Berry phase obtained from the SdH oscillations is trivial, in contrast to the case of SrMnBi2. The relatively large spin orbit coupling gap and the small Fermi energy in SrMnSb2 is found to be essential to understand this contrasting behavior of the massive Dirac fermions as compared to SrMnBi2. Our observations demonstrate that the Berry phase of the mobile electrons in SrMnSb2 is sensitive to the Fermi level change and can be tuned by doping or deficiency.  相似文献   

8.
The stationary Josephson effect in S-N-S junction is considered. It is found that except the usual term there is another contribution to the supercurrent which is due to the interaction between the electrons in the normal metal. The features of this extra supercurrent are: 1) it is proportional to the electron-electron coupling constant so its sign is arbitrary, 2) the period of its dependence on phase discontinuity is π (not 2π as usual). This additional supercurrent will dominate the usual one if normal metal is in the ferromagnetic state. Therefore, if the electrons in ferromagnet repulse each other the phase discontinuity is equal to π /2 in the ground state. A system with finite current in the ground state can be constructed.  相似文献   

9.
The supercurrent for the surface superconductivity of a flat-band multilayered rhombohedral graphene is calculated. Despite the absence of dispersion of the excitation spectrum, the supercurrent is finite. The critical current is proportional to the zero-temperature superconducting gap, i.e., to the superconducting critical temperature and to the size of the flat band in the momentum space.  相似文献   

10.
Four-component massive and massless Dirac fermions in the presence of long range Coulomb interaction and chemical potential disorder exhibit striking fermionic quantum criticality. For an odd number of flavors of Dirac fermions, the sign of the Dirac mass distinguishes the topological and the trivial band insulator phases, and the gapless semimetallic phase corresponds to the quantum critical point that separates the two. Up to a critical strength of disorder, the semimetallic phase remains stable, and the universality class of the direct phase transition between two insulating phases is unchanged. Beyond the critical strength of disorder the semimetallic phase undergoes a phase transition into a disorder controlled diffusive metallic phase, and there is no longer a direct phase transition between the two types of insulating phases.  相似文献   

11.
《Physics letters. A》2006,352(3):202-205
We show that the energy spectrum of the one-dimensional Dirac equation in the presence of a spatial confining point interaction exhibits a resonant behavior when one includes a weak electric field. After solving the Dirac equation in terms of parabolic cylinder functions and showing explicitly how the resonant behavior depends on the sign and strength of the electric field, we derive an approximate expression for the value of the resonance energy in terms of the electric field and delta interaction strength.  相似文献   

12.
基于第一性原理的密度泛函理论,对SiC单层不同位置掺杂Co进行了能带结构、电子态密度、净自旋密度和自旋纹理等计算,结果表明不同位置的掺杂引起不同特征的自旋积累及单层的电子结构特性。由于Co的不同选位掺杂而产生一些新奇现象,如扭曲的Co-C键在掺杂SiC内激发了自旋流而诱导了自旋重新分布,不同选位的Co原子通过调整内磁场改变了小极化子内巡游电子的定域属性,增加了Dirac点附近磁振子的色散强度等。这些研究结果为得到一个人工调控量子自旋电路和选频自旋波器件内自旋谷电子提供了理想平台。  相似文献   

13.
14.
Attaching a superconductor in good contact with a normal metal gives rise to a proximity effect where the superconducting correlations leak into the normal metal. An additional contact close to the first one makes it possible to carry a supercurrent through the metal. Forcing this supercurrent flow along with an additional quasiparticle current from one or many normal-metal reservoirs leads many interesting effects. The supercurrent can be used to tune the local energy distribution function of the electrons. This mechanism also leads to finite thermoelectric effects even in the presence of electron–hole symmetry. Here we review these effects and discuss to which extent the existing observations of thermoelectric effects in metallic samples can be explained through the use of the dirty limit quasiclassical theory. PACS  74.25.Fy; 73.23.-b; 74.45.+c; 74.40.+k  相似文献   

15.
In the presence of the charged impurities, we study the weak localization effect by evaluating the quantum interference correction to the conductivity of Dirac fermions in graphene. With the inelastic scattering rate due to electron-electron interactions obtained from our previous work, we investigate the dependence of the quantum interference correction on the carrier concentration, the temperature, the magnetic field, and the size of the sample. It is found that weak localization is present in large size samples at finite carrier doping. Its strength becomes weakened or quenched when the sample size is less than a few microns at low temperatures as studied in the experiments. In the region close to zero doping, the system may become delocalized. The minimum conductivity at low temperature for experimental sample sizes is found to be close to the data.  相似文献   

16.
Mean-field Bloch bands of a Bose-Einstein condensate in a honeycomb optical lattice are computed. We find that the topological structure of the Bloch bands at the Dirac point is changed completely by atomic interaction of arbitrary small strength: the Dirac point is extended into a closed curve and an intersecting tube structure arises around the original Dirac point. These tubed Bloch bands are caused by the superfluidity of the system. Furthermore, they imply the inadequacy of the tight-binding model to describe an interacting Boson system around the Dirac point and the breakdown of adiabaticity by interaction of arbitrary small strength.  相似文献   

17.
We study the effect of the Fermi surface anisotropy (hexagonal warping) on the superconducting pair potential, induced in a three-dimensional topological insulator (TI) by proximity with an s-wave superconductor (S) in presence of a magnetic moment of a nearby ferromagnetic insulator (FI). In the previous studies, similar problem was treated with a simplified Hamiltonian, describing an isotropic Dirac cone dispersion. This approximation is only valid near the Dirac point. However, in topological insulators, the chemical potential often lies well above this point, where the Dirac cone is strongly anisotropic and its constant energy contour has a snowflake shape. Taking into account this shape, we show that a very exotic pair potential is induced on the topological insulator surface. Based on the symmetry arguments we also discuss the possibility of a supercurrent flowing along the S/FI interface, when an S/FI hybrid structure is formed on the TI surface.  相似文献   

18.
The tight-binding electrons in graphene grown on top of hexagonal boron nitride (h-BN) substrate are studied. The two types of surfaces on the h-BN substrate give rise to Dirac fermions having positive and negative masses. The positive and negative masses of the Dirac fermions lead to the gapped graphene to behave as a “pseudo” ferromagnet. A very large (pseudo) tunneling magnetoresistance is predicted when the Fermi level approaches the gap region. The energy gap due to the breaking of sublattice symmetry in graphene on h-BN substrate is analogous to magnetic-induced energy gap on surface of topological insulators. We point out that positive and negative masses may correspond to signs of magnetic-like field perpendicular to graphene sheet acting on pseudo magnetic dipole moment of electrons, leading to pseudo-Larmor precession and Stern–Gerlach magnetic force.  相似文献   

19.
We study the energy band structure of magnetic graphene superlattices with delta-function magnetic barriers and zero average magnetic field. The dispersion relation obtained using the T-matrix approach shows the emergence of an infinite number of Dirac-like points at finite energies, while the original Dirac point is still located at the same place as that for pristine graphene. The carrier group velocity at the original Dirac point is isotropically renormalized, but at finite energy Dirac points it is generally anisotropic. An asymmetry in the width between the wells and the barriers of the periodic potential induces a shift of the original Dirac point in the zero-energy plane, keeping the velocity renormalization isotropic.  相似文献   

20.
A magnetoconductivity formula is presented for the surface states of a magnetically doped topological insulator. It reveals a competing effect of weak localization and weak antilocalization in quantum transport when an energy gap is opened at the Dirac point by magnetic doping. It is found that, while random magnetic scattering always drives the system from the symplectic to the unitary class, the gap could induce a crossover from weak antilocalization to weak localization, tunable by the Fermi energy or the gap. This crossover presents a unique feature characterizing the surface states of a topological insulator with the gap opened at the Dirac point in the quantum diffusion regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号