首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
王钰婷  徐立昕  吕剑波  桂元星 《中国物理 B》2010,19(1):19801-019801
In this paper, the properties of dark energy are investigated according to the parameterized deceleration parameter q(z), which is used to describe the extent of the accelerating expansion of the universe. The potential of dark energy V(φ) and the cosmological parameters, such as the dimensionless energy density \varOmega_φ, \varOmega_m, and the state parameter w_φ, are connected to it. Concretely, by giving two kinds of parameterized deceleration parameters q(z)=a+bz/(1+z) and q(z)=1/2+(az+b)/(1+z)^2, the evolution of these parameters and the reconstructed potentials V(φ) are plotted and analysed. It is found that the potentials run away with the evolution of universe.  相似文献   

2.
It has, quite recently, become fashionable to study a certain class of holographic-inspired models for the dark energy. These investigations have, indeed, managed to make some significant advances towards explaining the empirical data. Nonetheless, surprisingly little thought has been given to conceptual issues such as the composition and the very nature of the implicated energy source. In the current discourse, we attempt to fill this gap by the way of some speculative yet logically self-consistent arguments. Our construction takes us along a path that begins with an entanglement entropy and ends up at a Hubble-sized gas of exotic particles. Moreover, our interpretation of the dark energy turns out to be suggestive of a natural resolution to the cosmic-coincidence problem.  相似文献   

3.
A localized particle in Quantum Mechanics is described by a wave packet in position space, regardless of its energy. However, from the point of view of General Relativity, if the particle’s energy density exceeds a certain threshold, it should be a black hole. To combine these two pictures, we introduce a horizon wave function determined by the particle wave function in position space, which eventually yields the probability that the particle is a black hole. The existence of a minimum mass for black holes naturally follows, albeit not in the form of a sharp value around the Planck scale, but rather like a vanishing probability that a particle much lighter than the Planck mass may be a black hole. We also show that our construction entails an effective generalized uncertainty principle (GUP), simply obtained by adding the uncertainties coming from the two wave functions associated with a particle. Finally, the decay of microscopic (quantum) black holes is also described in agreement with what the GUP predicts.  相似文献   

4.
A scalar field with a pole in its kinetic term is often used to study cosmological inflation; it can also play the role of dark energy, which is called the pole dark energy model. We propose a generalized model where the scalar field may have two or even multiple poles in the kinetic term, and we call it the multi-pole dark energy. We find that the poles can place some restrictions on the values of the original scalar field with a non-canonical kinetic term. After the transformation to the canonical form, we get a flat potential for the transformed scalar field even if the original field has a steep one. The late-time evolution of the universe is obtained explicitly for the two pole model, while dynamical analysis is performed for the multiple pole model. We find that it does have a stable attractor solution, which corresponds to the universe dominated by the potential of the scalar field.  相似文献   

5.
6.
In models where dark matter and dark energy interact non-minimally, the total amount of matter in a fixed comoving volume may vary from the time of recombination to the present time due to energy transfer between the two components. This implies that, in interacting dark energy models, the fractional matter density estimated using the cosmic microwave background assuming no interaction between dark matter and dark energy will in general be shifted with respect to its true value. This may result in an incorrect determination of the equation of state of dark energy if the interaction between dark matter and dark energy is not properly accounted for, even if the evolution of the Hubble parameter as a function of redshift is known with arbitrary precision. In this Letter we find an exact expression, as well as a simple analytical approximation, for the evolution of the effective equation of state of dark energy, assuming that the energy transfer rate between dark matter and dark energy is described by a simple two-parameter model. We also provide analytical examples where non-phantom interacting dark energy models mimic the background evolution and primary cosmic microwave background anisotropies of phantom dark energy models.  相似文献   

7.
A new dark energy model, named “agegraphic dark energy”, has been proposed recently, based on the so-called Károlyházy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegraphic dark energy model and holographic dark energy model. The similarity and difference between agegraphic dark energy and holographic dark energy are also discussed.  相似文献   

8.
We consider the interaction between dark matter and dark energy in the framework of holographic dark energy, and propose a natural and physically plausible form of interaction, in which the interacting term is proportional to the product of the powers of the dark matter and dark energy densities. We investigate the cosmic evolution in such models. The impact of the coupling on the dark matter and dark energy components may be asymmetric. While the dark energy decouples from the dark matter at late time, just as other components of the cosmic fluid become decoupled as the universe expands, interestingly, the dark matter may actually become coupled to the dark energy at late time. We shall call such a phenomenon incoupling. We use the latest type Ia supernovae data from the SCP team, baryon acoustics oscillation data from SDSS and 2dF surveys, and the position of the first peak of the CMB angular power spectrum to constrain the model. We find that the interaction term which is proportional to the first power product of the dark energy and dark matter densities gives an excellent fit to the current data.  相似文献   

9.
Weak gravitational lensing is rapidly becoming one of the principal probes of dark matter and dark energy in the universe. In this brief review we outline how weak lensing helps determine the structure of dark matter halos, measure the expansion rate of the universe, and distinguish between modified gravity and dark energy explanations for the acceleration of the universe. We also discuss requirements on the control of systematic errors so that the systematics do not appreciably degrade the power of weak lensing as a cosmological probe.  相似文献   

10.
We propose a model for an anisotropic dark energy star where we assume that the radial pressure exerted on the system due to the presence of dark energy is proportional to the isotropic perfect fluid matter density. We discuss various physical features of our model and show that the model satisfies all the regularity conditions and is stable as well as singularity-free.  相似文献   

11.
12.
In this paper, we apply the quantum anomaly cancelation method and the effective action approach as well as the method of Damour–Ruffini–Sannan to derive Hawking radiation of Dirac particles from the Myers–Perry black hole. Using the dimensional reduction technique, we find that the fermionic field in the background of the Myers–Perry black hole can be treated as an infinite collection of quantum fields in (1+1)-dimensional background coupled with the dilaton field and the U(1) gauge field near the horizon. Thus Hawking temperature and fluxes are found. The Hawking temperature obtained agrees with the surface gravity formula while the Hawking fluxes derived from the anomaly cancelation method and the effective action approach are in complete agreement with the ones obtained from integrating the Planck distribution.  相似文献   

13.
14.
In a recent paper Beck and Mackey [C. Beck, M.C. Mackey, astro-ph/0603397] argue that the argument we gave in our paper [Ph. Jetzer, N. Straumann, Phys. Lett. B 606 (2005) 77, astro-ph/0411034] to disprove their claim that dark energy can be discovered in the Lab through noise measurements of Josephson junctions is incorrect. In particular, they emphasize that the measured noise spectrum in Josephson junctions is a consequence of the fluctuation dissipation theorem, while our argument was based on equilibrium statistical mechanics. In this note we show that the fluctuation dissipation relation does not depend upon any shift of vacuum (zero-point) energies, and therefore, as already concluded in our previous paper, dark energy has nothing to do with the proposed measurements.  相似文献   

15.
We have constructed star models consisting of four parts: (i) a homogeneous inner core with anisotropic pressure (ii) an infinitesimal thin shell separating the core and the envelope; (iii) an envelope of inhomogeneous density and isotropic pressure; (iv) an infinitesimal thin shell matching the envelope boundary and the exterior Schwarzschild spacetime. We have analyzed all the energy conditions for the core, envelope and the two thin shells. We have found that, in order to have static solutions, at least one of the regions must be constituted by dark energy. The results show that there is no physical reason to have a superior limit for the mass of these objects but for the ratio of mass and radius.  相似文献   

16.
In this paper, the model of the holographic Chaplygin gas has been extended to two general cases: first the case of a modified variable Chaplygin gas and second the case of the viscous generalized Chaplygin gas. The dynamics of the model is expressed by the use of scalar fields and scalar potentials.  相似文献   

17.
We have investigated constraints on the coupling between dark matter and the interacting Chaplygin gas. Our results indicate that the coupling constant c between these two entities can take arbitrary values, which can be either positive or negative, thus giving arbitrary freedom to the inter-conversion between Chaplygin gas and dark matter. Thus, our results indicate that the restriction 0<c<1 on the coupling constant occurs as a very special case. Our analysis also supports the existence of phantom energy under certain conditions on the coupling constant.  相似文献   

18.
The minimal metagravity theory, explicitly violating the general covariance but preserving the unimodular one, is applied to study the evolution of the isotropic homogeneous Universe. The massive scalar graviton, contained in the theory in addition to the massless tensor one, is treated as a source of dark matter and/or dark energy. The modified Friedmann equation for the scale factor of the Universe is derived. The question whether the minimal metagravity can emulate the LCDM concordance model, valid in General Relativity, is discussed. The text was submitted by the author in English.  相似文献   

19.
We observe that photon cooling after big bang nucleosynthesis but before recombination can remove the conflict between the observed and theoretically predicted value of the primordial abundance of ^{7}Li. Such cooling is ordinarily difficult to achieve. However, the recent realization that dark matter axions form a Bose-Einstein condensate provides a possible mechanism because the much colder axions may reach thermal contact with the photons. This proposal predicts a high effective number of neutrinos as measured by the cosmic microwave anisotropy spectrum.  相似文献   

20.
We present a holographic dark-energy model in which the Newton constant GNGN scales in such a way as to render the vacuum energy density a true constant. Nevertheless, the model acts as a dynamical dark-energy model since the scaling of GNGN goes at the expense of deviation of concentration of dark-matter particles from its canonical form and/or of promotion of their mass to a time-dependent quantity, thereby making the effective equation of state (EOS) variable and different from −1 at the present epoch. Thus the model has a potential to naturally underpin Dirac's suggestion for explaining the large-number hypothesis, which demands a dynamical GNGN along with the creation of matter in the universe. We show that with the aid of observational bounds on the variation of the gravitational coupling, the effective-field theory IR cutoff can be strongly restricted, being always closer to the future event horizon than to the Hubble distance. As for the observational side, the effective EOS restricted by observation can be made arbitrary close to −1, and therefore the present model can be considered as a “minimal” dynamical dark-energy scenario. In addition, for nonzero but small curvature (|Ωk0|?0.003)(|Ωk0|?0.003), the model easily accommodates a transition across the phantom line for redshifts z?0.2z?0.2, as mildly favored by the data. A thermodynamic aspect of the scenario is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号