首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present a theoretical framework for the thermodynamic properties of supercoiling-induced denaturation bubbles in circular double-stranded DNA molecules. We explore how DNA supercoiling, ambient salt concentration, and sequence heterogeneity impact on the bubble occurrence. An analytical derivation of the probability distribution to find multiple bubbles is derived and the relevance for supercoiled DNA discussed. We show that in?vivo sustained DNA bubbles are likely to occur due to partial twist release in regions rich in weaker AT base pairs. Single DNA plasmid imaging experiments clearly demonstrate the existence of bubbles in free solution.  相似文献   

2.
3.
A unified theory of the denaturation transition having torsion energy as the control parameter has been formulated here in the framework of the mapping of a DNA molecule onto a Heisenberg spin system. The torsion energy incorporates the torque, tension and temperature, the latter being associated with the twist angle. The denaturation transition can be mapped onto the quantum phase transition induced by a quench when the temperature effect is incorporated in the quench time and torsion takes the role of the external field. The denaturation transition occurs when the entanglement entropy of the spin system vanishes.  相似文献   

4.
We investigate the thermal denaturation of DNA hairpins using molecular dynamics simulations of a simple model describing the molecule at a scale of a nucleotide. The model allows us to analyze the different interacting features that determine how an hairpin opens, such as the role of the loop and the properties intrinsic to the stem.  相似文献   

5.
The dynamics of a loop in DNA molecules at the denaturation transition is studied by scaling arguments and numerical simulations. The autocorrelation function of the state of complementary bases (either closed or open) is calculated. The long-time decay of the autocorrelation function is expressed in terms of the loop exponent c both for homopolymers and heteropolymers. This suggests an experimental method for measuring the exponent c using florescence correlation spectroscopy.  相似文献   

6.
Summary We have considered a model of a lattice gas defined on a periodic tangled chain to study the DNA denaturation by a modified transfer matrix method. By using an iterative algorithm we have obtained numerically different kinds of melting curves for different configurations of the tangled chain and different types of interactions. In some special cases of configurations and interactions we have found the same melting curves, which we have obtained before studying some simple lattice gas models, using different techniques. This more generalized model and the new results could be useful for the experimental investigations.  相似文献   

7.
We solve a model for the equilibrium folding of DNA via the formation of randomly placed (nonspecific) loops. We find that the loop rearrangement entropy drives a significant reduction in loop size as more loops form. The reduction of the most probable loop size occurs over a wide range of forces and is enhanced by interloop cooperativity, indicating that it should be observable in single DNA experiments.  相似文献   

8.
A mesoscopic model for heterogeneous DNA denaturation is developed in the framework of the path integral formalism. The base pair stretchings are treated as one-dimensional, time-dependent paths contributing to the partition function. The size of the paths ensemble, which measures the degree of cooperativity of the system, is computed versus temperature consistently with the model potential physical requirements. It is shown that the ensemble size strongly varies with the molecule backbone stiffness providing a quantitative relation between stacking and features of the melting transition. The latter is an overall smooth crossover which begins from the adenine-thymine-rich portions of the fragment. The harmonic stacking coupling shifts, along the T -axis, the occurrence of the multistep denaturation but it does not change the character of the crossover. The methods to compute the fractions of open base pairs versus temperature are discussed: by averaging the base pair displacements over the path ensemble, we find that such fractions signal the multisteps of the transition in good agreement with the indications provided by the specific heat plots.  相似文献   

9.
The nature and the universal properties of DNA thermal denaturation are investigated by Monte Carlo simulations. For suitable lattice models we determine the exponent c describing the decay of the probability distribution of denaturated loops of length l, P approximately l(-c). If excluded volume effects are fully taken into account, c = 2.10(4) is consistent with a first order transition. The stiffness of the double stranded chain has the effect of sharpening the transition, if it is continuous, but not of changing its order and the value of the exponent c, which is also robust with respect to inclusion of specific base-pair sequence heterogeneities.  相似文献   

10.
Double stranded DNA chain is known to have non-trivial elasticity. We study the effect of this elasticity on the denaturation profile of DNA oligomer by constraining one base pair at one end of the oligomer to remain in unstretched (or intact) state. The effect of this constraint on the denaturation profile of the oligomer has been calculated using the Peyrard-Bishop Hamiltonian. The denaturation profile is found to be very different from the free (i.e. without the constraint) oligomer. We have also examined how this constraint affects the denaturation profile of the oligomer having a segment of defect sites located at different parts of the chain.  相似文献   

11.
The melting transition of DNA, whereby the strands of the double-helix structure completely separate at a certain temperature, has been characterized using neutron scattering. A Bragg peak from B-form fiber DNA has been measured as a function of temperature, and its widths and integrated intensities have been interpreted using the Peyrard-Bishop-Dauxois model with only one free parameter. The experiment is unique, as it gives spatial correlation along the molecule through the melting transition where other techniques cannot.  相似文献   

12.
We study the effect of the composition of the genetic sequence on the melting temperature of double stranded DNA, using some simple analytically solvable models proposed in the framework of the wetting problem. We review previous work on disordered versions of these models and solve them when there were not preexistent solutions. We check the solutions with Monte Carlo simulations and transfer matrix numerical calculations. We present numerical evidence that suggests that the logarithmic corrections to the critical temperature due to disorder, previously found in RSOS models, apply more generally to ASOS and continuous models. The agreement between the theoretical models and experimental data shows that, in this context, disorder should be the crucial ingredient of any model while other aspects may be kept very simple, an approach that can be useful for a wider class of problems. Our work has also implications for the existence of correlations in DNA sequences.  相似文献   

13.
14.
A DNA molecule with freely fluctuating ends undergoes a sharp thermal denaturation transition upon heating. However, in circular DNA chains and some experimental setups that manipulate single DNA molecules, the total number of turns (linking number) is constant at all times. The consequences of this additional topological invariant on the melting behaviour are nontrivial. Below, we investigate the melting characteristics of a homogeneous DNA where the linking number along the melting curve is preserved by supercoil formation in duplex portions. We obtain the mass fraction and the number of loops and supercoils below and above the melting temperature. We also argue that a macroscopic loop appears at T c and calculate its size as a function of temperature.  相似文献   

15.
A statistical model of homopolymer DNA, coupling internal base-pair states (unbroken or broken) and external thermal chain fluctuations, is exactly solved using transfer kernel techniques. The dependence on temperature and DNA length of the fraction of denaturation bubbles and their correlation length is deduced. The thermal denaturation transition emerges naturally when the chain fluctuations are integrated out and is driven by the difference in bending (entropy dominated) free energy between broken and unbroken segments. Conformational properties of DNA, such as persistence length and mean-square-radius, are also explicitly calculated, leading, e.g., to a coherent explanation for the experimentally observed thermal viscosity transition.  相似文献   

16.
Recently Garel, Monthus and Orland [Europhys. Lett. 55, 132 (2001)] considered a model of DNA denaturation in which excluded volume effects within each strand are neglected, while mutual avoidance is included. Using an approximate scheme they found a first order denaturation. We show that a first order transition for this model follows from exact results for the statistics of two mutually avoiding random walks, whose reunion exponent is c > 2, both in two and three dimensions. Analytical estimates of c due to the interactions with other denaturated loops, as well as numerical calculations, indicate that the transition is even sharper than in models where excluded volume effects are fully incorporated. The probability distribution of distances between homologous base pairs decays as a power law at the transition. Received 8 July 2002 / Received in final form 25 July 2002 Published online 17 September 2002  相似文献   

17.
We study the influence of a structural disorder on the thermodynamical properties of 2D-elastic chains submitted to mechanical/topological constraint as loops. The disorder is introduced via a spontaneous curvature whose distribution along the chain presents either no correlation or long-range correlations (LRC). The equilibrium properties of the one-loop system are derived numerically and analytically for weak disorder. LRC are shown to favor the formation of small loop, larger the LRC, smaller the loop size. We use the mean first passage time formalism to show that the typical short time loop dynamics is superdiffusive in the presence of LRC. Potential biological implications on nucleosome positioning and dynamics in eukaryotic chromatin are discussed.  相似文献   

18.
In this Letter, we report direct measurement of large low frequency temperature fluctuations in double stranded DNA when it undergoes a denaturation transition. The fluctuation, which occurs only in the temperature range where the denaturation occurs, is several orders more than the expected equilibrium fluctuation. It is absent in single stranded DNA of the same sequence. The fluctuation at a given temperature also depends on the wait time and vanishes in a scale of a few hours. It is suggested that the large fluctuation occurs due to coexisting denaturated and closed base pairs that are in dynamic equilibrium due to the transition through a potential barrier in the scale of 25-30kBT0 (T0=300 K).  相似文献   

19.
The linking number (topological entanglement) and the writhe (geometrical entanglement) of a model of circular double stranded DNA undergoing a thermal denaturation transition are investigated by Monte Carlo simulations. By allowing the linking number to fluctuate freely in equilibrium we see that the linking probability undergoes an abrupt variation (first-order) at the denaturation transition, and stays close to 1 in the whole native phase. The average linking number is almost zero in the denatured phase and grows as the square root of the chain length, N, in the native phase. The writhe of the two strands grows as in both phases. Received 8 May 2002 Published online 13 August 2002  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号