首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Following the discovery of the Higgs boson with a mass of approximately 125 Ge V at the LHC, many studies have been performed from both the theoretical and experimental viewpoints to search for a new Higgs Boson that is lighter than 125 Ge V. We explore the possibility of constraining a lighter neutral scalar Higgs boson h_1 and a lighter pseudo-scalar Higgs boson a_1 in the Next-to-Minimal Supersymmetric Standard Model by restricting the next-to-lightest scalar Higgs boson h_2 to be the one observed at the LHC after applying the phenomenological constraints and those from experimental measurements. Such lighter particles are not yet completely excluded by the latest results of the search for a lighter Higgs boson in the diphoton decay channel from LHC data. Our results show that some new constraints on the Next-to-Minimal Supersymmetric Standard Model could be obtained for a lighter scalar Higgs boson at the LHC if such a search is performed by experimental collaborations and more data. The potentials of discovery for other interesting decay channels of such a lighter neutral scalar or pseudo-scalar particle are also discussed.  相似文献   

2.
The search for the Higgs boson was one of the most relevant issues of the final years of LEP running at high energies. An excess of 3σ beyond the background expectation has been found, consistent with the production of the Higgs boson with a mass near 115 GeV/c2. At the upgraded TeVatron and at LHC the search for the Higgs boson will continue. At TeVatron Higgs bosons can be detected with masses up to 180 GeV with an assumed total integrated luminosity of 20 fb—1. LHC has the potential to discover the Higgs boson in many different decay channels for Higgs masses up to 1 TeV. It will be possible to measure Higgs boson parameters, such as mass, width, and couplings to fermions and bosons. The results from Higgs searches at LEP2 and the possibilities for searches at hadron colliders will be reviewed.  相似文献   

3.
Already in the simplest two-Higgs-doublet model with CP violation in the Higgs sector, the 3×3 mixing matrix for the neutral Higgs bosons can substantially modify their couplings, thereby endangering the “classical” Higgs search strategies. However, there are sum rules relating Yukawa and Higgs–Z couplings which ensure that the ZZ, and couplings of a given neutral 2HDM Higgs boson cannot all be simultaneously suppressed. This result implies that any single Higgs boson will be detectable at an e+e collider if the Z+Higgs, Higgs and Higgs production channels are all kinematically accessible and if the integrated luminosity is sufficient. We explore, as a function of Higgs mass, the luminosity required to guarantee Higgs boson detection, and find that for moderate tanβ values the needed luminosity is unlikely to be available for all possible mixing scenarios. Implications of the sum rules for Higgs discovery at the Tevatron and LHC are briefly discussed.  相似文献   

4.
Rohini M Godbole 《Pramana》2006,67(5):835-847
In this talk I discuss some aspects of CP violation (CPV) in supersymmetry (SUSY) as well as in the Higgs sector. Further, I discuss ways in which these may be probed at hadronic colliders. In particular I will point out the ways in which studies in the sector at the Tevatron may be used to provide information on this and how the search can be extended to the LHC. I will then follow this by a discussion of the CP mixing induced in the Higgs sector due to the above-mentioned CPV in the soft SUSY breaking parameters and its effects on the Higgs phenomenology at the LHC. I would then point out some interesting aspects of the phenomenology of a moderately light charged Higgs boson, consistent with the LEP constraints, in this scenario. Decay of such a charged Higgs boson would also allow a probe of a light (≲50 GeV), CP-violating (CPV) Higgs boson. Such a light neutral Higgs boson might have escaped detection at LEP and could also be missed at the LHC in the usual search channels.  相似文献   

5.
The Higgs boson search has shifted from LEP2 to the Tevatron and will subsequently move to the LHC. The current limits from the Tevatron and the prospective sensitivities at the LHC are often interpreted in specific MSSM scenarios. For heavy Higgs boson production and subsequent decay into or τ+τ, the present Tevatron data allow one to set limits in the MA–tan β plane for small MA and large tan β values. Similar channels have been explored for the LHC, where the discovery reach extends to higher values of MA and smaller tan β. Searches for MSSM charged Higgs bosons, produced in top decays or in association with top quarks, have also been investigated at the Tevatron and the LHC. We analyze the current Tevatron limits and prospective LHC sensitivities. We discuss how robust they are with respect to variations of the other MSSM parameters and possible improvements of the theoretical predictions for Higgs boson production and decay. It is shown that the inclusion of supersymmetric radiative corrections to the production cross sections and decay widths leads to important modifications of the present limits on the MSSM parameter space. The impact on the region where only the lightest MSSM Higgs boson can be detected at the LHC is also analyzed. We propose to extend the existing benchmark scenarios by including additional values of the higgsino mass parameter μ. This affects only slightly the search channels for a SM-like Higgs boson, while having a major impact on the searches for non-standard MSSM Higgs bosons.  相似文献   

6.
We present a search for the standard model Higgs boson in H --> WW(*) decays with e+e-, e+/-mu-/+, and mu+mu- final states in pp collisions at a center-of-mass energy of square root of s = 1.96 TeV. The data, collected from April 2002 to June 2004 with the D0 detector, correspond to an integrated luminosity of 300-325 pb(-1), depending on the final state. The number of events observed is consistent with the expectation from backgrounds. Limits from the combination of all three channels on the Higgs boson production cross section times branching ratio sigma x BR(H --> WW(*) are presented.  相似文献   

7.
A search for neutral Higgs bosons has been performed using the full sample of Z0 decays collected by the OPAL detector at LEP up to 1995. The data were taken at centre-of-mass energies between 88 GeV and 95 GeV and correspond to an integrated luminosity of approximately 160 pb?1. The present search addresses the processes Z0→H0Z* and h0Z*, where H0 is the Higgs boson predicted by the Standard Model and h0 the lightest neutral scalar Higgs boson predicted in the framework of the Minimal Supersymmetric Standard Model. For the virtual Z0 boson, Z*, the following decay channels are considered: Z*→vv?, e+e? and μ+μ?. Two candidate events have been found in the vv?H0 channel and one in the μ+μ?H0 channel. Combined with earlier searches, the present search excludes the SM Higgs boson, at the 95% confidence level (CL), from the mass range below 59.6 GeV. In the framework of the Minimal Supersymmetric Standard Model, allowing a wide range of variation for most relevant model parameters, a 95% CL lower limit of 44.3 GeV is obtained for the mass of the h0 boson. Combined with earlier direct searches for the Higgs boson pair production process Z0→h0A0 and with measurements of the Z0 line shape, a 95% CL lower limit of 23.5 GeV is obtained for the mass of the pseudoscalar Higgs boson A0, assuming tan β≥ 1.  相似文献   

8.
The phenomenology of the low scale U(1)B–L extension of the standard model and its implications at LHC energies is presented. In this model, an extra gauge boson corresponding to B–L gauge symmetry and an extra SM singlet scalar (heavy Higgs boson) are predicted. We show a detailed analysis of both heavy and light Higgs bosons decay and production in addition to the possible decay channels of the new gauge boson. We find that the cross sections of the SM-like Higgs production are reduced by ∼20–30%, while its decay branching ratios remain intact. The extra Higgs boson has relatively small cross sections and the branching ratios of Z→l+l- are of order ∼20% to be compared to ∼3% of the SM results. Hence, the search for Z is accessible via a clean dilepton signal at LHC.  相似文献   

9.
Current Higgs boson searches in various channels at the LHC point to an excess at around 124-126 GeV due to a possibly standard-model-like Higgs boson. If one examines more closely the channels (γγ, WW(*), and ZZ(*)) that have excess, this "Higgs boson" may be the Randall-Sundrum radion ?. Because of the trace anomaly, the radion has stronger couplings to the photon and gluon pairs. Thus, it will enhance the production rates into gg and γγ, while those for WW(*), ZZ(*), and b ?b are reduced relative to their standard model values. We show that it can match well with the data from CMS for m(?)=124 GeV, and the required scale Λ(?)~ is about 0.68 TeV.  相似文献   

10.
Physics of Atomic Nuclei - To date, Higgs boson production has been observed at the Large Hadron Collider (LHC) in four different channels. Associated Higgs boson production with a single top quark...  相似文献   

11.
Higgs boson production in association with a photon(H+) offers a promising channel to test the Higgs boson to photon coupling at various energy scales. Its potential sensitivity to anomalous couplings of the Higgs boson has not been explored with the proton-proton collision data. In this paper, we reinterpret the latest ATLAS H+resonance search results within the Standard Model effective field theory(EFT) framework, using 36.1 fb~(-1) of protonproton collision data recorded with the ATLAS detector at s~(1/2) 13 TeV. Constraints on the Wilson coefficients of dimension-six EFT operators related to the Higgs boson to photon coupling are provided for the first time in the H+final state at the LHC.  相似文献   

12.
ROBERTA VOLPE 《Pramana》2012,79(5):1341-1344
A search for a Higgs boson decaying into two photons in pp collisions at the LHC at a centre-of-mass energy of 7 TeV is presented. The analysis is performed on a dataset corresponding to 1.66 fb?1 of data recorded in 2011 by the CMS experiment. Limits are set on the cross-section of a Standard Model Higgs boson decaying into two photons, and on the cross-section of a fermiophobic Higgs boson decaying into two photons.  相似文献   

13.
《Nuclear Physics B》1988,297(2):221-243
This paper considers the decay of a standard model Higgs boson into a tau pair, as a possible signature at the SSC or LHC for a Higgs boson of mass between 110 and 160 GeV. The production of the Higgs in association with a large transverse momentum jet is considered, since this may aid in reconstructing the Higgs mass. The background from the production of tau pairs via virtual photons and Z's is studied. We comment on the possible use of this process to search for a light Higgs at the Tevatron collider.  相似文献   

14.
We search for the standard model Higgs boson produced with a Z boson in 4.1 fb(-1) of integrated luminosity collected with the CDF II detector at the Tevatron. In events consistent with the decay of the Higgs boson to a bottom-quark pair and the Z boson to electrons or muons, we set 95% credibility level upper limits on the ZH production cross section multiplied by the H → bb branching ratio. Improved analysis methods enhance signal sensitivity by 20% relative to previous searches. At a Higgs boson mass of 115 GeV/c2 we set a limit of 5.9 times the standard model cross section.  相似文献   

15.
We present the results of a search for standard model Higgs boson production with decay to WW*, identified through the leptonic final states e+ e- nu nu,+/-mu -/+nu nu and mu+ mu- nu nu. This search uses 360 pb -1 of data collected from pp collisions at square root of s =1.96 TeV by the upgraded Collider Detector at Fermilab (CDF II). We observe no signal excess and set 95% confidence level upper limits on the production cross section times branching ratio for the Higgs boson to WW* or any new scalar particle with similar decay products. These upper limits range from 5.5 to 3.2 pb for Higgs boson masses between 120 and 200 GeV/c2.  相似文献   

16.
《Nuclear Physics B》1999,544(3):557-575
We study the decays of Higgs bosons to a lighter Higgs boson and a virtual gauge boson in the context of the non-supersymmetric two-Higgs doublet model (2HDM). We consider the phenomenological impact at LEP2 and find that such decays, when open, may be dominant in regions of parameter space and thus affect current Higgs boson search techniques. Three-body decays would be a way of producing light neutral Higgs bosons which have so far escaped detection at LEP due to suppressed couplings to the Z, and are of particular importance in the 2HDM (Model I) which allows both a light fermiophobic Higgs and a light charged scalar.  相似文献   

17.
We have analysed the data collected by OPAL at centre-of-mass energies between 189 and 209 GeV searching for Higgs boson candidates from the process followed by the decay of where is the CP-odd Higgs boson. The search is done in the region where the mass, , is below the production threshold for , and the CP-even Higgs boson mass is within the range 45-86 GeV/c 2 . In this kinematic range, the decay of may be dominant and previous Higgs boson searches have very small sensitivities. This search can be interpreted within any model that predicts the existence of at least one scalar and one pseudoscalar Higgs boson. No excess of events is observed above the expected Standard Model backgrounds. Model-independent limits on the cross-section for the process are derived assuming 100% decays of the into and 100% decays of the into each of the following final states: , , , , and . The results are also interpreted in the CP-conserving no-mixing MSSM scenario, where the region and is excluded. Received: 13 March 2002 / Published online: 26 February 2003  相似文献   

18.
《Comptes Rendus Physique》2007,8(9):1078-1097
We review the prospects for searches of the Standard Model Higgs boson at the LHC, based on detailed studies performed by the ATLAS and CMS Collaborations. The search channels and strategies are described, resulting in the assessment of the discovery potential for the two experiments. We discuss the prospects for measurements in the Higgs sector. To cite this article: A. De Roeck, G. Polesello, C. R. Physique 8 (2007).  相似文献   

19.
A search for the Higgs boson has been performed in the H→WW(*)→?(+)ν?(-)ν[over ˉ] channel (?=e/μ) with an integrated luminosity of 2.05 fb(-1) of pp collisions at √s=7 TeV collected with the ATLAS detector at the Large Hadron Collider. No significant excess of events over the expected background is observed and limits on the Higgs boson production cross section are derived for a Higgs boson mass in the range 110 GeV相似文献   

20.
We present a search for the standard model Higgs boson and a fermiophobic Higgs boson in the diphoton final states based on 8.2 fb(-1) of pp collisions at sqrt[s]=1.96 TeV collected with the D0 detector at the Fermilab Tevatron Collider. No excess of data above background predictions is observed and upper limits at the 95% C.L. on the cross section multiplied by the branching fraction are set which are the most restrictive to date. A fermiophobic Higgs boson with a mass below 112.9 GeV is excluded at the 95% C.L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号