首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Fluid Phase Equilibria》2007,255(1):24-30
In this work, a new model based on molecular thermodynamic was presented to correlate the surface tension of pure polar liquids. This model was developed based on the Davis theory. According to this theory, the surface tension is defined as a function of radial distribution function (RDF) and potential function (PF) as well. The proposed model includes three additive terms; hard sphere, dispersion and polar interactions. The RDF of Kolafa equation of state and Dirac delta function as a PF were used for hard sphere interaction. The RDF expression of Xu and Hu was considered for both dispersion and polar interactions. The presented model has two adjustable parameters, size and energy, which were obtained by optimization of an objective function for each pure fluid. This proposed approach was used for 19 pure polar fluids divided into 6 groups; organic acids, alcohols, ketones, ethers, aldehydes, and water. The average absolute deviation percent (AAD%) obtained for 19 fluids are 0.74. Also the surface tension of these 19 fluids was calculated by the use of SRK EOS and Sugden empirical formula in two cases. In case 1, Sugden's Parachor was calculated from Hugill and van Welsenes correlation and in case 2, it was obtained by optimization of an objective function for each component. The values of AAD% are 43.544 and 2.281 for cases 1 and 2, respectively. These results show the new model, which includes two adjustable parameters, can correlate the surface tension of the pure polar liquids with a high accuracy.  相似文献   

2.
《Fluid Phase Equilibria》2004,217(2):233-239
The Perturbed-Chain SAFT (PC-SAFT) equation of state is applied to pure polar substances as well as to vapor–liquid and liquid–liquid equilibria of binary mixtures containing polar low-molecular substances and polar co-polymers. For these components, the polar version of the PC-SAFT model requires four pure-component parameters as well as the functional-group dipole moment. For each binary system, only one temperature-independent binary interaction kij is needed. Simple mixing and combining rules are adopted for mixtures with more than one polar component without using an additional binary interaction parameter. The ability of the model to accurately describe azeotropic and non-azeotropic vapor–liquid equilibria at low and at high pressures, as well as liquid–liquid equilibria is demonstrated for various systems containing polar components. Solvent systems like acetone–alkane mixtures and co-polymer systems like poly(ethylene-co-vinyl acetate)/solvent are discussed. The results for the low-molecular systems also show the predictive capabilities of the extended PC-SAFT model.  相似文献   

3.
Our recently improved renormalization group (RG) theory is further reformulated within the context of density functional theory. To improve the theory for polar and associating fluids, an explicit and complete expression of the theory is derived in which the density fluctuation is expanded up to the third-order term instead of the original second-order term. A new predictive equation of state based on the first-order mean spherical approximation statistical associating fluid theory (FMSA-SAFT) and the newly improved RG theory is proposed for systems containing polar and associating fluids. The calculated results for both pure fluids and mixtures are in good agreement with experimental data both inside and outside the critical region. This work demonstrates that the RG theory incorporated with the solution of FMSA is a promising route for accurately describing the global phase behavior of complex fluids and mixtures.  相似文献   

4.
A systematic investigation on vapor-liquid equilibria (VLEs) of dipolar and quadrupolar fluids is carried out by molecular simulation to develop a new Helmholtz energy contribution for equations of state (EOSs). Twelve two-center Lennard-Jones plus point dipole and point quadrupole model fluids (2CLJDQ) are studied for different reduced dipolar moments micro*2=6 or 12, reduced quadrupolar moments Q*2=2 or 4 and reduced elongations L*=0, 0.505, or 1. Temperatures cover a wide range from about 55% to 95% of the critical temperature of each fluid. The NpT+test particle method is used for the calculation of vapor pressure, saturated densities, and saturated enthalpies. Critical data and the acentric factor are obtained from fits to the simulation data. On the basis of this data, an EOS contribution for the dipole-quadrupole cross-interactions of nonspherical molecules is developed. The expression is based on a third-order perturbation theory, and the model constants are adjusted to the present 2CLJDQ simulation results. When applied to mixtures, the model is found to be in excellent agreement with results from simulation and experiment. The new EOS contribution is also compatible with segment-based EOS, such as the various forms of the statistical associating fluid theory EOS.  相似文献   

5.
Accurate design of processes based on ionic liquids (ILs) requires knowledge of the phase behavior of the systems involved. In this work, the truncated perturbed chain polar statistical associating fluid theory (tPC-PSAFT) is used to correlate the phase behavior of binary and ternary IL mixtures. Both non-polar and polar solvents are examined, while methyl imidazolium ILs are used in all cases. tPC-PSAFT accounts explicitly for weak dispersion interactions, highly directive polar interactions between permanent dipolar and quadrupolar molecules and association between hydrogen bonding molecules. For mixtures of non-polar solvents, tPC-PSAFT predicts accurately the binary mixture data. For the case of polar solvents, a binary interaction parameter is fitted to the experimental data and the agreement between experiment and correlation is very good in all cases.  相似文献   

6.
《Fluid Phase Equilibria》2004,215(1):71-78
A simplified perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state is applied to polymer systems that include a variety of non-associating (esters, cyclic hydrocarbons), polar (ketones) as well as associating (amines, alcohols) solvents. The solvent pure-component parameters that are not available in the literature are estimated by correlating vapor-pressure and liquid-density data. The performance of the simplified PC-SAFT is compared to the original PC-SAFT equation of state for polymer systems of varying complexity. It is shown that the applied simplification is not at the expense of the accuracy of equation of state, while the computational time and complexity are significantly reduced, especially for associating systems. With no binary interaction parameter, simplified PC-SAFT is successfully able to predict vapor–liquid equilibria of polymers with non-associating solvents. In the case of associating solvents, a small binary interaction parameter kij is usually needed for the satisfactory correlation of the experimental data.  相似文献   

7.
The GC-SAFT equation of state proposed by Tamouza et al. (2004) [51], extended to polar molecular fluids NguyenHuynh et al. (2008) [32], is here applied to model vapor-liquid phase equilibria of various binary mixtures containing at least one oxygenated compound belonging to ethers, ketones or aldehydes chemical families.These systems are modeled using a polar version of the three different versions of SAFT-EOS (original, VR-SAFT and PC-SAFT) in a predictive manner: binary interaction parameters kij and lij are all set to zero.In the case of alcohol + ether, +ketone, +aldehyde systems, a cross-association interaction between an oxygenated compound (non self-associating compound) and an alcohol is necessary to model/predict accurately the mixture VLE. The corresponding association parameters are assumed to be equal to the self-association parameters of pure 1-alkanols.The above-cited systems have been treated in a comprehensive manner. The general agreement between polar GC-SAFT and experimental data is good (within 4-5% deviation on pressure), similar to the one obtained on previously investigated systems using GC-SAFT.  相似文献   

8.
Equations of state based on the statistical associating fluid theory for potentials of variable range (SAFT-VR) and the perturbed chain statistical associating fluid theory (PC-SAFT) have been used to model the PVT behavior of ionic liquids and the solubility of H2S in six imidazolium-based ionic liquids. The studied systems included [bmim][PF6], [hmim][PF6], [bmim][BF4], [hmim][BF4], [bmim][NTF2] and [hmim][NTF2] at various temperatures and pressures.For pure components, parameters of the models have been obtained by fitting the models to experimental data on liquid densities; the average relative deviation between the calculated and experimental densities for ionic liquids is less than 2.42% in the PC-SAFT model and 5.44% in the SAFT-VR approach, the latter which incorporates the square-well potential for short-range interactions. In both models an additional term has been added to account for dipole-dipole interactions between solute molecules resulting from the permanent charges on the chain molecules of the solvents. The model parameters have also been correlated as functions of the molecular weight of the solvents. For binary mixtures of ionic liquids and H2S, the association interactions between H2S molecules and between the ionic liquids and H2S molecules have also been taken into account in both approaches, using binary interaction coefficients. The results show an average deviation of less than 5% in the calculation of the mole fraction of H2S in the ionic liquids. The effect of inclusion of the polar term has been studied for binary systems in both models.  相似文献   

9.
The solvation of electrons in polar liquids is analyzed on the basis of an extended continuum model. In addition to the long-range electron-dipole interaction two short-range interactions are introduced. Among others one accounts for interactions with groups capable of forming hydrogen bonds and the second for quadrupolar characteristics of the liquid molecules. Both are induced by the orientation of the molecular dipole. Applying the scaling method a proper reaction coordinate is introduced and the solvation dynamics are discussed for the electron in the electronic ground state and after excitation to the p-type excited state. The observed spectral evolution of the transient absorption spectra, after two photon excitations for electrons in water and in methanol, is well described by this theory. An analytic estimate for the nonradiative deactivation from the electronically excited solvated electron is found to be consistent with an observed lifetime of 50 fs for the electron in water. The theory predicts an about three times slower internal conversion in methanol as solvent in comparison with water.  相似文献   

10.
Monte Carlo simulations are presented for a coarse-grained model of real quadrupolar fluids. Molecules are represented by particles interacting with Lennard-Jones forces plus the thermally averaged quadrupole-quadrupole interaction. The properties discussed include the vapor-liquid coexistence curve, the vapor pressure along coexistence, and the surface tension. The full isotherms are also accessible over a wide range of temperatures and densities. It is shown that the critical parameters (critical temperature, density, and pressure) depend almost linearly on a quadrupolar parameter q=Q(*4)T*, where Q* is the reduced quadrupole moment of the molecule and T* the reduced temperature. The model can be applied to a variety of small quadrupolar molecules. We focus on carbon dioxide as a test case, but consider nitrogen and benzene, too. Experimental critical temperature, density, and quadrupolar moment are sufficient to fix the parameters of the model. The resulting agreement with experiments is excellent and marks a significant improvement over approaches which neglect quadrupolar effects. The same coarse-grained model was also applied in the framework of perturbation theory in the mean spherical approximation. As expected, the latter deviates from the Monte Carlo results in the critical region, but is reasonably accurate at lower temperatures.  相似文献   

11.
In this work, an equation of state (EoS) is developed to predict accurately the phase behavior of ionic liquid + CO2 systems based on the truncated perturbed chain polar statistical associating fluid theory (tPC-PSAFT) EoS. This EoS accounts explicitly for the dipolar interactions between ionic liquid molecules, the quadrupolar interactions between CO2 molecules, and the Lewis acid-base type of association between the ionic liquid and the CO2 molecules. Physically meaningful model pure-component parameters for ionic liquids are estimated based on literature data. All experimental vapor-liquid equilibrium data are correlated with a single linearly temperature-dependent binary interaction parameter. The ability of the model to describe accurately carbon dioxide solubility in various 1-alkyl-3-methylimidazolium-based ionic liquids with different alkyl chain lengths and different anions at pressures from 0 to 100 MPa and carbon dioxide fractions from 0 to 75 mol % is demonstrated. In all cases, good agreement with experimental data is obtained.  相似文献   

12.
13.
The recently developed perturbed-chain statistical-associating-fluid theory (PC-SAFT) is investigated for a wide range of model parameters including the parameter m representing the chain length and the thermodynamic temperature T and pressure p. This approach is based upon the first-order thermodynamic perturbation theory for chain molecules developed by Wertheim [M. S. Wertheim, J. Stat. Phys. 35, 19 (1984); ibid. 42, 459 (1986)] and Chapman et al. [G. Jackson, W. G. Chapman, and K. E. Gubbins, Mol. Phys. 65, 1 (1988); W. G. Chapman, G. Jackson, and K. E. Gubbins, ibid. 65, 1057 (1988)] and includes dispersion interactions via the second-order perturbation theory of Barker and Henderson [J. A. Barker and D. Henderson, J. Chem. Phys. 47, 4714 (1967)]. We systematically study a hierarchy of models which are based on the PC-SAFT approach using analytical model calculations and Monte Carlo simulations. For one-component systems we find that the analytical model in contrast with the simulation results exhibits two phase-separation regions in addition to the common gas-liquid coexistence region: One phase separation occurs at high density and low temperature. The second demixing takes place at low density and high temperature where usually the ideal-gas phase is expected in the phase diagram. These phenomena, which are referred to as "liquid-liquid" and "gas-gas" equilibria, give rise to multiple critical points in one-component systems, as well as to critical end points and equilibria of three fluid phases, which can usually be found in multicomponent mixtures only. Furthermore, it is shown that the liquid-liquid demixing in this model is not a consequence of a "softened" repulsive interaction as assumed in the theoretical derivation of the model. Experimental data for the melt density of polybutadiene with molecular mass Mw=45,000 gmol are correlated here using the PC-SAFT equation. It is shown that the discrepancies in modeling the polymer density at ambient temperature and high pressure can be traced back to the liquid-liquid phase separation predicted by the equation of state at low temperatures. This investigation provides a basis for understanding possible inaccuracies or even unexpected phase behavior which can occur in engineering applications of the PC-SAFT model aiming at predicting properties of macromolecular substances.  相似文献   

14.
The perturbed-chain statistical associating fluid theory (PC-SAFT) and density-gradient theory are used to construct an equation of state to describe the phase behavior of binary methane–n-alkane mixtures. With the molecular parameters and influence parameters regressed from bulk properties and surface tensions of pure fluids, respectively as input, both the bulk and interfacial properties are investigated. The surface tension of the binary systems methane–propane, methane–pentane, methane–heptane and methane–decane are predicted, and the results are satisfactory compared with the experimental data. Our results show that PC-SAFT combined with density-gradient theory is able to describe the interfacial properties of binary methane–n-alkane mixtures in wide temperature and pressure ranges, and illustrate the influence of the equilibrium bulk properties and chain length of n-alkane molecule on the interfacial properties.  相似文献   

15.
The local density inhomogeneities in neat supercritical fluids were investigated via canonical molecular dynamics simulations. The selected systems under investigation were the polar and hydrogen-bonded fluid methanol as well as the quadrupolar non-hydrogen-bonded carbon dioxide one. Effective local densities, local density augmentation, and enhancement factors were calculated at state points along an isotherm close to the critical temperature of each system (T(r)=1.03). The results obtained reveal strong influence of the polarity and hydrogen bonding upon the intensity of the local density augmentation. It is found that this effect is sufficiently larger in the case of the polar and associated methanol in comparison to those predicted for carbon dioxide. For both fluids the local density augmentation values are maximized in the bulk density region near 0.7rho(c), a result that is in agreement with experiment. In addition, the local density dynamics of each fluid were investigated in terms of the appropriate time correlation functions. The behavior of these functions reveals that the bulk density dependence of the local density reorganization times is very sensitive to the specific intermolecular interactions and to the size of the local region. Also, the estimated local density reorganization time as a function of bulk density of each fluid was further analyzed and successfully related to two different time-scale relaxation mechanisms. Finally, the results obtained indicate a possible relationship between the single-molecule reorientational dynamics and the local density reorganization ones.  相似文献   

16.
The PC-SAFT equation of state is a very popular and promising model for fluids that employs a complicated pressure-explicit mathematical function (and can therefore not be solved analytically at a specified pressure and temperature, contrary to classical cubic equations). In this work, we demonstrate that in case of pure fluids, the PC-SAFT equation may exhibit up to five different volume roots whereas cubic equations give at the most three volume roots (and yet, only one or two volume roots have real significance). The consequence of this strongly atypical behaviour is the existence of two different fluid–fluid coexistence lines (the vapour-pressure curve and an additional liquid–liquid equilibrium curve) and two critical points for a same pure component, which is obviously physically inconsistent. In addition to n-alkanes, nearly 60 very common pure components (branched alkanes, cycloalkanes, aromatics, esters, gases, and so on) were tested out and without any exception, we can claim that all of them exhibit this undesired behaviour. In addition, such similar phenomena (i.e. existence of more than three volume roots) may also arise with mixtures. From a computational point of view, most of the algorithms used for solving equations of state only search for three roots at the most and are thus likely to be inefficient when an equation of state gives more than three volume roots. To overcome this limitation, a simple procedure allowing to identify all the possible volume roots of an equation of state is proposed.  相似文献   

17.
Vapor–liquid equilibrium (VLE) data are presented for the n-butane + ethanol system in the temperature range from 323 to 423 K. Measurements were performed using a “static-analytic” apparatus, equipped with two electromagnetic ROLSI™ capillary samplers, and thermally regulated via an air bath. This work presents vapor compositions which have not been explicitly measured previously. The modeling of the data was performed using two models: the Peng–Robinson equation of state with the Wong and Sandler mixing rule and NRTL excess function (PR/WS/NRTL); and the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state. To assess the effect of dipole–dipole interactions present, a dipolar contribution developed by Jog and Chapman (1999) [20] was tested with the second model. Temperature dependent binary interaction parameters have been adjusted to the new data. The PR/WS/NRTL equation of state shows good correlation with the results, while the PC-SAFT is slightly less accurate.  相似文献   

18.
Inorganic molten salts, such as NaCl, are known to show characteristically lower values of Guggenheim's corresponding-states surface tension γ(red) at a given reduced temperature T∕T(c) than simple or aprotic polar fluids. Recently, the corresponding values of γ(red) for (some) room temperature ionic liquids (RTILs) were found in the same region as those for weakly polar fluids, that is, markedly above the values typical of inorganic molten salts despite the ionic character of RTILs. Here, we present the results of simulations of an ionic model fluid in which the strength of attractive dispersion interactions among the ions is varied relative to the Coulomb interactions. For weak dispersive interactions, the behavior known for real inorganic molten salts is found. If the attractive dispersion energy of two unlike ions at contact exceeds 20% of the Coulombic attraction in such an isolated ion pair, γ(red) increases markedly and approaches the region of values for simple and polar fluids. Rough theoretical estimates of the relative strengths of dispersive and Coulombic attractions in molten inorganic salts and in RTILs support our conclusion that the dispersion interactions in RTILs are strong enough for their corresponding-states surface tension to behave regularly and, thus, to deviate from the values one would expect for strongly ionic systems.  相似文献   

19.
20.
Absorption and fluorescence spectroscopy studies reveal the formation of a weak complex between pyrene and C(6)F(6) even in very dilute systems. The complex affects the photophysics of pyrene and reveals a combination of static and dynamic-quenching phenomena in both polar and nonpolar solvents. The results are supported by computational studies that shed light on the structure of the complex and the interactions involved and suggest that ground and excited-state interactions are of comparable magnitude; the association is believed to be driven by quadrupolar interactions. Understanding these interactions in solution is important for applications that aim at controlling the regio- or stereoselectivity of organic reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号