首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a systematic high-resolution angle-resolved photoemission spectroscopy on high-T(c) superconductors Bi(2)Sr(2)Ca(n-1)Cu(n)O(2n+4) (n=1-3) to study the origin of many-body interactions responsible for superconductivity. For n=2 and 3, a sudden change in the energy dispersion, so called "kink", becomes pronounced on approaching (pi,0) in the superconducting state, while a kink appears only around the nodal direction in the normal state. For n=1, the kink shows no significant temperature dependence even across T(c). This could suggest that the coupling of electrons with Q=(pi,pi) magnetic mode is dominant in the superconducting state for multilayered cuprates, while the interactions at the normal state and that of single-layered cuprates have a different origin.  相似文献   

2.
Employing dynamical cluster quantum Monte Carlo calculations we show that the single-particle spectral weight A(k,omega) of the one-band two-dimensional Hubbard model displays a high-energy kink in the quasiparticle dispersion followed by a steep dispersion of a broad peak similar to recent angle-resolved photoemission spectroscopy results reported for the cuprates. Based on the agreement between the Monte Carlo results and a simple calculation which couples the quasiparticle to spin fluctuations, we conclude that the kink and the broad spectral feature in the Hubbard model spectra is due to scattering with damped high-energy spin fluctuations.  相似文献   

3.
We report the first measurement of the Cu-O bond stretching phonon dispersion in optimally doped Bi2Sr1.6La0.4Cu2O6+delta using inelastic x-ray scattering. We found a softening of this phonon at q=( approximately 0.25,0,0) from 76 to 60 meV, similar to the one reported in other cuprates. A comparison with angle-resolved photoemission data on the same sample revealed an excellent agreement in terms of energy and momentum between the angle-resolved photoemission nodal kink and the soft part of the bond stretching phonon. Indeed, we find that the momentum space where a 63+/-5 meV kink is observed can be connected with a vector q=(xi,0,0) with xi > or =0.22, corresponding exactly to the soft part of the bond stretching phonon.  相似文献   

4.
In the present photoemission study of a cuprate superconductor Bi1.74Pb0.38Sr1.88CuO6+delta, we discovered a large scale dispersion of the lowest band, which unexpectedly follows the band structure calculation very well. Similar behavior observed in blue bronze and the Mott insulator Ca2CuO2Cl2 suggests that the origin of hopping-dominated dispersion in an overdoped cuprate might be quite complicated. A giant kink in the dispersion is observed, and the complete self-energy containing all interaction information is extracted for a doped cuprate. These results recovered significant missing pieces in our current understanding of the electronic structure of cuprates.  相似文献   

5.
We discuss a comprehensive scheme for modeling various highly resolved spectroscopies of the cuprates where effects of matrix element, crystal structure, strong electron correlations, and superconductivity are included realistically in material-specific detail. A number of illustrative examples drawn from our recent work are presented. Specific issues in the cuprate physics considered are: (i) Origin of high-energy kink or the waterfall effect; (ii) Dichroic effects in angle-resolved photoemission spectrum; (iii) Asymmetry of the scanning tunneling spectrum between the processes of electron extraction and injection; (iv) Persistence of ‘Mott’ like high-energy features with doping in optical spectra; (v) Magnetic excitations in electron and hole doped cuprates.  相似文献   

6.
A Chainani  D D Sarma 《Pramana》1991,37(2):135-140
The observed O 1s X-ray photoemission spectra of the cuprate superconductors often exhibit a satellite at a higher binding energy to the main peak. The origin of this satellite is not fully understood. We have done model cluster calculations to investigate the origin of this satellite using the configuration interaction approach. The calculated spectra for the divalent and superconducting cuprates essentially exhibit a single peak. On distorting the cluster in-plane, the peak shifts to higher binding energies. This substantiates a deterioration of the surface leading to the observed satellite structure in the O 1s core-level photoemission spectra of the cuprate superconductors.  相似文献   

7.
We review the contribution of infrared spectroscopy to the study of the pseudogap in high temperature superconductors. The pseudogap appears as a depression of the frequency dependent conductivity in the c-axis direction and seems to be related to a real gap in the density of states. It can also be seen in the Knight shift, photoemission and tunneling experiments. In underdoped samples it appears near room temperature and does not close with temperature. Another related phenomenon that has been studied by infrared is the depression in the ab-plane scattering rate. Two separate effects can be discerned. At high temperatures there is broad depression of scattering below 1000 cm−1 which may be related to the gap in the density of states. At a lower temperature a sharper structure is seen, which appears to be associated with scattering from a mode at 300 cm−1, and which governs the carrier life time at low temperatures. This mode shows up in a number of other experiments, as a kink in angle resolved photoemission dispersion, and a resonance at 41 meV in magnetic neutron scattering. Since the infrared technique can be used on a wide range of samples it has provided evidence that the scattering mode is present in all high temperature cuprates and that its frequency in optimally doped materials scales with the superconducting transition temperature. The lanthanum and neodymium based cuprates do not follow this scaling and appear to have depressed transition temperatures.  相似文献   

8.
We report a comparison study of LaOFeP and LaOFeAs, two parent compounds of recently discovered iron-pnictide superconductors, using angle-resolved photoemission spectroscopy. Both systems exhibit some common features that are very different from well-studied cuprates. In addition, important differences have also been observed between these two ferrooxypnictides. For LaOFeP, quantitative agreement can be found between our photoemission data and the LDA band structure calculations, suggesting that a weak coupling approach based on an itinerant ground state may be more appropriate for understanding this new superconducting compound. In contrast, the agreement between LDA calculations and experiments in LaOFeAs is relatively poor, as highlighted by the unexpected Fermi surface topology around (π, π). Further investigations are required for a comprehensive understanding of the electronic structure of LaOFeAs and related compounds.  相似文献   

9.
10.
We explore manifestations of electron-phonon coupling on the electron spectral function for two phonon modes in the cuprates exhibiting strong renormalizations with temperature and doping. Applying simple symmetry considerations and kinematic constraints, we find that the out-of-plane, out-of-phase O buckling mode (B(1g)) involves small momentum transfers and couples strongly to electronic states near the antinode while the in-plane Cu-O breathing modes involve large momentum transfers and couples strongly to nodal electronic states. Band renormalization effects are found to be strongest in the superconducting state near the antinode, in full agreement with angle-resolved photoemission spectroscopy data.  相似文献   

11.
We present general symmetry considerations on how a time-reversal breaking state may be detected by angle-resolved photoemission using circularly polarized photons as has been proposed earlier. Results of recent experiments utilizing the proposal in underdoped cuprates are analyzed and found to be consistent in their symmetry and magnitude with a theory of the copper oxides. These experiments if correct, together with evidence of a quantum critical point and marginal Fermi-liquid properties near optimum doping, suggest that the essentials of a valid microscopic theory of the phenomena in the cuprates may have been found.  相似文献   

12.
The electron-phonon interaction in cuprates with c-axis polarised optical phonons, which is roughly one order of magnitude stronger than superexchange, bounds holes into mobile bipolarons. Bipolarons pin the chemical potential within the charge-transfer gap of doped Mott insulators, accounting for unusual kinetics and thermodynamics of doped cuprates such as the Nernst and giant proximity effects, pseudo-gaps, and normal-state diamagnetism. We propose that “quasi-particle” peaks, “Fermi-arcs”, and high-energy “waterfalls” in the photoemission spectra of cuprates originate from the photo-ionization matrix elements of disorder-localised band-tails in the charge-transfer gap.  相似文献   

13.
We present detailed energy dispersions near the Fermi level along the high symmetry line GammaX on the monolayer and bilayer strontium ruthenates Sr2RuO4 and Sr3Ru2O7, determined by high-resolution angle-resolved photoemission spectroscopy. A kink in the dispersion is clearly shown for the both ruthenates. The energy position of the kink and the slope in the low-energy part near the Fermi level are almost identical between them, whereas the dispersion in the high-energy part varies, like the behavior of the kink for the cuprate superconductors.  相似文献   

14.
We develop a theory for the electron-phonon interaction effects on the electronic properties of graphene. We analytically calculate the electron self-energy, spectral function, and the band velocity renormalization due to phonon-mediated electron-electron interaction, finding that phonon-mediated electron-electron coupling has a large effect on the graphene band structure renormalization. Our analytic theory successfully captures the essential features of the observed graphene electron spectra in the angle-resolved photoemission experiments, predicting a kink at approximately 200 meV below the Fermi level and a reduction of the band velocity by approximately 10-20% at the experimental doping level.  相似文献   

15.
We study the effects of quasiparticle interactions on disorder-induced localization of Dirac-like nodal excitations in superconducting high- Tc cuprates. As suggested by the experimental angle-resolved photoemission spectroscopy and terahertz conductivity data in Bi2Sr2CaCu2O(8+delta), we focus on the interactions mediated by the order parameter fluctuations near an incipient second pairing transition d --> d + is(id'). We find interaction corrections to the density of states, specific heat, and conductivity as well as phase and energy relaxation rates and assess the applicability of the recent localization scenarios for noninteracting random Dirac fermions to the cuprates.  相似文献   

16.
Using high-resolution angle-resolved photoemission spectroscopy we have studied the momentum and photon energy dependence of the anomalous high-energy dispersion, termed waterfalls, between the Fermi level and 1 eV binding energy in several high-T_{c} superconductors. We observe strong changes of the dispersion between different Brillouin zones and a strong dependence on the photon energy around 75 eV, which we associate with the resonant photoemission at the Cu3p-->3d_{x;{2}-y;{2}} edge. We conclude that the high-energy "waterfall" dispersion results from a strong suppression of the photoemission intensity at the center of the Brillouin zone due to matrix element effects and is, therefore, not an intrinsic feature of the spectral function. This indicates that the new high-energy scale in the electronic structure of cuprates derived from the waterfall-like dispersion may be incorrect.  相似文献   

17.
Angle-resolved photoemission data in the superconducting state of Bi2Sr2CaCu2O8+delta show a kink in the dispersion along the zone diagonal, which is related via a Kramers-Kr?nig analysis to a drop in the low energy scattering rate. As one moves towards (pi,0), this kink evolves into a spectral dip. The occurrence of these anomalies in the dispersion and line shape throughout the zone indicates the presence of a new energy scale in the superconducting state.  相似文献   

18.
Applying the Kramers-Kronig consistent procedure, developed earlier, we investigate in detail the formation of the quasiparticle spectrum along the nodal direction of high-Tc cuprates. The heavily discussed "70 meV kink" on the renormalized dispersion exhibits a strong temperature and doping dependence when purified from structural effects such as bilayer splitting, diffraction replicas, etc. This dependence is well understood in terms of fermionic and bosonic constituents of the self-energy. The latter follows the evolution of the spin-fluctuation spectrum, emerging below some doping dependent temperature and sharpening below Tc, and is mainly responsible for the formation of the kink in question.  相似文献   

19.
The question of determining the underlying Fermi surface (FS) that is gapped by superconductivity (SC) is of central importance in strongly correlated systems, particularly in view of angle-resolved photoemission experiments. Here we explore various definitions of the FS in the superconducting state using the zero-energy Green's function, the excitation spectrum, and the momentum distribution. We examine (a) d-wave SC in high-Tc cuprates, and (b) the s-wave superfluid in the BCS-Bose-Einstein condensation (BEC) crossover. In each case we show that the various definitions agree, to a large extent, but all of them violate the Luttinger count and do not enclose the total electron density. We discuss the important role of chemical potential renormalization and incoherent spectral weight in this violation.  相似文献   

20.
马磊 《中国物理快报》2007,24(12):3516-3519
We propose a model composed of spin-polarized itinerant electrons and bosonic spin-wave excitations, and study renormalization of the spin-polarized itinerant electron bands due to electron-magnon scattering. Spin-polarized kink structures are predicted in the normal state quasiparticle dynamics of ferromagnetic superconductor as UGe2. It is suggested that the angle-resolved photoemission experiment may be helpful in this respect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号