首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on magnetotransport measurements in a high-mobility two-dimensional electron system subject simultaneously to ac (microwave) and dc (Hall) fields. We find that dc excitation affects microwave photoresistance in a nontrivial way. Photoresistance maxima (minima) evolve into minima (maxima) and back, reflecting strong coupling and interplay of ac- and dc-induced effects. Most of our observations can be explained in terms of indirect electron transitions using a new, combined resonant condition. Observed quenching of microwave-induced zero resistance by a dc field cannot be unambiguously linked to a domain model, at least before a systematic theory treating both excitation types within a single framework is developed.  相似文献   

2.
Based on a semiclassical Boltzmann transport equation in random phase approximation, we develop a theoretical model to understand low-field carrier transport in biased bilayer graphene, which takes into account the charged impurity scattering, acoustic phonon scattering, and surface polar phonon scattering as three main scattering mechanisms. The surface polar optical phonon scattering of carriers in supported bilayer graphene is thoroughly studied using the Rode iteration method. By considering the metal–BLG contact resistance as the only one free fitting parameter, we find that the carrier density dependence of the calculated total conductivity agrees well with that observed in experiment under different temperatures. The conductivity results also suggest that in high carrier density range, the metal–BLG contact resistance can be a significant factor in determining the BLG conductivity at low temperature, and both acoustic phonon scattering and surface polar phonon scattering play important roles at higher temperature, especially for BLG samples with a low doping concentration, which can compete with charged impurity scattering.  相似文献   

3.
We review our recent results obtained on an AlN/GaN-based high-electron-mobility transistor. The temperature of the electrons drifting under a relatively-high electric field is significantly higher than the lattice temperature (i.e., the hot electrons are generated). These hot electrons are produced through the Fröhlich interaction between the drifting electrons and long-lived longitudinal-optical phonons. By fitting electric field vs. electron temperature deduced from the measurements of photoluminescence spectra to a theoretical model, we have deduced the longitudinal-optical-phonon emission time for each electron is to be on the order of 100 fs. We have also measured the decay time constant for LO phonons to be about 4.2 ps. An electric field present in a GaN/AlN heterostructure can bring both the first-order and second-order Raman scattering processes into strong resonances. The resonant Stokes and anti-Stokes Raman scattering results in the increase and decrease of non-equilibrium longitudinal-optical phonon temperatures, respectively. Moreover, the phonon temperature measured from the Raman scattering is increased with an applied electric field at a much higher rate than the lattice temperature due to the presence of field-induced non-equilibrium longitudinal-optical phonons.  相似文献   

4.
We describe the major requirements to experimentally perform and observe resonant spin-flip Raman scattering on excitonic resonances in low-dimensional semiconductors. We characterize in detail the properties of this resonant light scattering technique and evaluate the criteria, which must be fulfilled by the experimental setup and the semiconductor sample studied to be able to observe a spin-flip scattering process. We also demonstrate the influence of additional unpolarized laser illumination with energies, which exceed considerably the band gap energy of the semiconductor nanostructure under study, on the resonantly excited electron spin-flip scattering in InAs-based quantum dot ensembles as well as on the paramagnetic Mn-ion spin-flip in (Zn,Mn)Se/(Zn,Be)Se quantum wells.  相似文献   

5.
By using scattering matrix method, we investigate the acoustic phonons transport in a quantum waveguide embedded double defects at low temperatures. When acoustic phonons propagate through the waveguide, the total transmission coefficient versus the reduced phonon frequency exhibits a series of resonant peaks and dips, and acoustic waves interfere with each other in the waveguide to form standing wave with particular wavelengths. In the waveguide with void defects, acoustic phonons whose frequencies approach zero can transport without scattering. The acoustic phonons propagating in the waveguide with clamped material defects, the phonons frequencies must be larger than a threshold frequency. It is also found that the thermal conductance versus temperature is qualitatively different for different types of defects. At low temperatures, when the double defects are void, the universal quantum thermal conductance and a thermal conductance plateau can be clearly observed. However, when the double defects consist of clamped material, the quantized thermal conductance disappears but a threshold temperature where mode 0 can be excited emerges. The results can provide some references in controlling thermal conductance artificially and the design of phonon devices.  相似文献   

6.
By using scattering matrix method, we investigate the acoustic phonons transport in a quantum waveguide embedded double defects at low temperatures. When acoustic phonons propagate through the waveguide, the total transmission coefficient versus the reduced phonon frequency exhibits a series of resonant peaks and dips, and acoustic waves interfere with each other in the waveguide to form standing wave with particular wavelengths. In the waveguide with void defects, acoustic phonons whose frequencies approach zero can transport without scattering. The acoustic phonons propagating in the waveguide with clamped material defects, the phonons frequencies must be larger than a threshold frequency. It is also found that the thermal conductance versus temperature is qualitatively different for different types of defects. At low temperatures, when the double defects are void, the universal quantum thermal conductance and a thermal conductance plateau can be clearly observed. However, when the double defects consist of clamped material, the quantized thermal conductance disappears but a threshold temperature where mode 0 can be excited emerges. The results can provide some references in controlling thermal conductance artificially and the design of phonon devices.  相似文献   

7.
Resonant Raman scattering of optical phonons in self-assembled quantum dots   总被引:1,自引:0,他引:1  
We have investigated the carrier relaxation mechanism in InGaAs/GaAs quantum dots by photoluminescence excitation (PLE) spectroscopy. Near-field scanning optical microscope successfully shows that a PLE resonance at a relaxation energy of 36 meV can be seen in all single-dot luminescence spectra, and thus can be attributed to resonant Raman scattering by a GaAs LO phonon to the excitonic ground state. In addition, a number of sharp resonances observed in single-dot PLE spectra can be identified as resonant Raman features due to localized phonons, which are observed in the conventional Raman spectrum. The results reveal the mechanism for the efficient relaxation of carriers observed in self-assembled quantum dots: the carriers can relax within the continuum states, and make transitions to the excitonic ground state by phonon emission.  相似文献   

8.
王彦成  邱吴劼  杨宏亮  席丽丽  杨炯  张文清 《物理学报》2018,67(1):16301-016301
对于重要热电材料之一的填充方钴矿材料,其低热导率的成因存在两种观点:1)填充原子的局域振动引起共振散射降低热导率;2)填充原子的引入加强了三声子倒逆过程来降低热导率.本文采用含有限温度效应的第一性原理分子动力学方法模拟了YbFe_4Sb_(12)的动力学过程,并通过温度相关有效势场方法得到了充分包含非线性作用的等效非谐力常数,研究了微扰近似下的声子输运性质.结果显示,在填充原子振动全部参与三声子倒逆散射过程的近似下,相比于纯方钴矿体系,声子寿命大幅地降低,填充原子的振动是热阻的重要来源.但即便如此,理论计算结果与实验的晶格热导率之间仍存在明显偏离.不同填充原子振动之间的较弱关联性质也揭示其明显偏离经典的声子图像,表现为一种强烈的局域特征振动模式,并以此散射其他晶格声子,因而对热阻的贡献也超出了传统三声子的理论框架.通过将填充原子Yb振动模式的寿命进行共振散射形式的修正,可以使晶格热导率与实验结果符合较好.以上结果表明,YbFe_4Sb_(12)的低晶格热导率是由声子间相互作用以及具有局域振动特征的共振散射两方面因素导致.  相似文献   

9.
We consider the process of light scattering by optical solitons in a planar waveguide with homogeneous and inhomogeneous refractive index cores. We observe resonant reflection (Fano resonances) as well as resonant transmission of light by optical solitons. All resonant effects can be controlled in experiment by changing the soliton intensity.  相似文献   

10.
We investigated the phonon scattering effects on the transport properties of carbon nanotube devices with micron-order lengths at room temperature, using the time-dependent wave-packet approach based on the Kubo formula within a tight-binding approximation. We studied the scattering effects of both the longitudinal acoustic and the optical phonons on the transport properties. The conductance of semiconducting nanotubes is decreased by the acoustic phonon, instead of the optical phonon. Furthermore, we clarified how the electron mobilities of the devices are affected by the acoustic phonon.  相似文献   

11.
Efficient design of optoelectronic devices based on electron intersubband transitions depends critically on the knowledge of the intersubband relaxation times which in turn, depends on electron scattering with LO and acoustic phonons. In this article the intersubband scattering time associated with electron–acoustic-phonon interaction has been discussed in terms of phonon mode quantization and phonon confinement with describing the acoustic phonon dispersion relation in detail by introducing the cut-off frequency for each mode. It has been shown that the quantization of acoustic phonon modes lead to an enhancement in electron–phonon scattering time in AlGaAs quantum well structures. Based on the presented model, a new tailoring method has presented to adjust the electron–phonon scattering time in intersubband-transition-based structures while keeping the electronic properties unaltered. Also, we illustrated that for a quantum well with subband energy separation of ∼30 meV, the intersubband scattering time with acoustic-phonon-assisted transitions could be tailored from ∼120 ps to increased value of ∼400 ps or reduced value of ∼45 ps by inserting a 1 nm-thickacoustically soft or hard layers, respectively, while keeping the same the initial energy separation.  相似文献   

12.
In studying resonant Raman scattering in the vicinity of the A and B excitons of CdSe, we have observed three new Raman peaks. Two of the peaks have been identified as two-phonon modes consisting of a longitudinal optical (LO) phonon plus respectively a transverse acoustic (TA) and a longitudinal acoustic (LA) phonon. A theory which involves the scattering of photoexcited B excitons to the A exciton by acoustic phonons via the piezoelectric exciton-phonon interaction was found to explain quantitatively the peak positions, lineshape and resonance enhancements of the observed peaks.  相似文献   

13.
王志刚  段素青  赵宪庚 《中国物理》2005,14(6):1232-1237
本文用单带模型分别研究了直流外场和交流外场作用下,电声子相互作用对半导体超晶格的动力学局域化性质的影响。结果表明:电声子相互作用会破坏电子的动力学局域化。对同一声子频率,电声子相互作用的强度越大,电子越快被散射;当声子频率等于直流场的布洛赫频率或交流场频率时,初始局域在某一格点的电子被迅速地散射到其他格点上去,亦即光声子共振场会严重破坏电子的动力学局域化性质。  相似文献   

14.
He atom surface scattering by dispersionless phonons is treated employing coupled channel (CC) calculations. At low energies, they predict a behavior opposite to perturbative Born or "exponentiated" Born approximation: strong resonant phonon stimulated elastic and inhibited inelastic scattering. The corresponding resonances have not been observed in earlier CC results since these have considered only the temperature dependence of the Debye-Waller factor at higher energy or omitted the attractive well. The resonances can be interpreted in terms of bound states in the attractive well with several excited vibrational quanta. They may be observable for, e.g., He scattering by a cold Xe/Cu surface.  相似文献   

15.
Theoretical and experimental studies of the acoustic scattering by a finite linear grating of elastic cylindrical shells are performed. It is observed that a resonant interaction takes place at low frequency when the shells are very close to each other. This phenomenon can be clearly associated to the Scholte-Stoneley wave that propagates around a single shell. It is shown that each resonance of the Scholte-Stoneley wave is split up into N resonances when N shells compose the grating.  相似文献   

16.
The resonant scattering by a periodic infinite array of fluid-filled cylindrical cavities in an elastic matrix is studied. The exact reflection and transmission coefficients of the array are calculated by means of a multiple scattering formalism taking into account all the interactions between the cavities. Numerical results are next given for low frequencies for which only the longitudinal and transverse zero modes propagate. A first study based on the analysis of the transmission coefficients clearly shows that the resonances of the array can be classified into two sets: those close to the resonances of a single cavity and those due to a resonant coupling between a cavity and its nearer neighbors. The resonant coupling is due to the interaction between the whispering-gallery surface waves propagating around each cavity. In the case of cavities with very close spacing, it is observed that the dispersion curves of the waves propagating along the array can also be classified into two sets: those with a positive group velocity have cut-off frequencies that correspond to the resonances of a single cavity, those with a negative group velocity have cut-off frequencies that correspond to the resonances resulting from the strong coupling. A new method for the analysis of the resonances is presented. It is based on the properties of the scattering matrix and consists in studying the resonant eigenvalues of the scattering matrix of the array once the background is removed. For the detection of very fine resonances, as well as in the separation of several resonances very close to each other, this method proves to be more efficient than one based on the analysis of the reflection and transmission coefficients.  相似文献   

17.
The longitudinal optical (LO) phonon energy in AlGaN/GaN heterostructures is determined from temperature-dependent Hall effect measurements and also from Infrared (IR) spectroscopy and Raman spectroscopy. The Hall effect measurements on AlGaN/GaN heterostructures grown by MOCVD have been carried out as a function of temperature in the range 1.8-275 K at a fixed magnetic field. The IR and Raman spectroscopy measurements have been carried out at room temperature. The experimental data for the temperature dependence of the Hall mobility were compared with the calculated electron mobility. In the calculations of electron mobility, polar optical phonon scattering, ionized impurity scattering, background impurity scattering, interface roughness, piezoelectric scattering, acoustic phonon scattering and dislocation scattering were taken into account at all temperatures. The result is that at low temperatures interface roughness scattering is the dominant scattering mechanism and at high temperatures polar optical phonon scattering is dominant.  相似文献   

18.
Resonant Raman scattering at the direct exciton in TlBr at 1.8K is reported. The cross-section for forbidden 1LO (Γ) scattering shows resonances at both the 1s and 2s exciton. For the first time strongly resonant forbidden 1TO (Γ) scattering is observed for which possible mechanisms are discussed. Several two-phonon Raman processes involving M-point phonons confirm by direct observation the phonon intervalley scattering between non-equivalent X-points.  相似文献   

19.
Theoretical calculations of electron–phonon scattering rates in AlGaN/GaN quantum dots (QDs) have been performed by means of effective mass approximation in the frame of finite element method. The influence of a symmetry breaking of the carrier's wave function on the electron dephasing time is investigated for various QDs shapes. In a QD system the electron energy increases when the QD shape changes from a spherical to a non-spherical form. In addition, the influence of the QD shape upon the electronic structure can be modulated by external magnetic fields. We also show that the electron–acoustic phonon scattering rates strongly depend upon both the QD shape and the applied magnetic field. As an additional parameter, the QD shape can be used to modify the electron–acoustic phonon interaction in a wide range. Moreover, the scattering rate of different transitions, such as Δm=0(1), presents distinct magnetic field dependency.  相似文献   

20.
The carrier distribution over Landau levels was studied in resonant tunneling GaAs/AlGaAs quantum well structures under tunneling pumping of the upper subband. The numerical calculations of the Landau levels population for various values of pumping intensity (tunneling time), magnetic field and the structure doping were carried out. The effect of various scattering mechanisms, as two-electron (electron–electron scattering) as single-electron (acoustic phonon and interface roughness scattering) ones on level population was studied. The population inversion between the zeroth Landau level of the upper subband and the first Landau level of the lowest subband was shown to exist in wide range of the magnetic field strength thus providing the possibility of wide range tunable stimulated terahertz emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号