首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model for the transition to the radiatively improved (RI) mode triggered in tokamaks by seeding of impurities is proposed. This model takes into account that with increasing plasma effective charge the growth rate of the toroidal ion temperature gradient (ITG) instability, considered nowadays as the dominant source of anomalous energy losses in low-confinement (L) mode, decreases. As a result the plasma density profile peaks due to an inward convection generated by trapped electron turbulence. This completely quenches ITG induced transport and a bifurcation to the RI mode occurs. Conditions necessary for the L-RI transition are investigated.  相似文献   

2.
Hui Li 《中国物理 B》2022,31(6):65207-065207
The structural characteristics of zonal flows and their roles in the nonlinear interaction of multi-scale multi-mode turbulence are investigated numerically via a self-consistent Landau-fluid model. The multi-mode turbulence here is composed of a shorter wavelength electromagnetic (EM) ion temperature gradient (ITG) mode and a Kelvin-Helmholtz (KH) instability with long wavelengths excited by externally imposed small-scale shear flows. For strong shear flow, a prominent periodic intermittency of fluctuation intensity except for dominant ITG component is revealed in turbulence evolution, which onset time depends on the ion temperature gradient and the shear flow amplitudes corresponding to different KH instabilities. It is identified that the intermittency phenomenon results from the zonal flow dynamics, which is mainly generated by the KH mode and back-reacts on it. It is demonstrated that the odd symmetric components of zonal flow (same symmetry as the external flow) make the radial parity of the KH mode alteration through adjusting the drift velocities at two sides of the resonant surface so that the KH mode becomes bursty first. Afterwards, the ITG intermittency follows due to nonlinear mode coupling. Parametric dependences of the features of the intermittency are elaborated. Finally, associated turbulent heat transport is evaluated.  相似文献   

3.
Interaction between small-scale zonal flows and large-scale turbulence is investigated. The key mechanism is identified as radially nonlocal mode coupling. Fluctuating energy can be nonlocally transferred from the unstable longer to the stable or damped shorter wavelength region, so that the turbulence spectrum is seriously deformed and deviates from the nonlinear power law structure. Three-dimensional gyrofluid ion-temperature gradient (ITG) turbulence simulations show that an ion transport bursting behavior is consistently linked to the spectral deformity with the causal role of ITG-generated zonal flows in tokamak plasmas.  相似文献   

4.
When Ohmically heated low-density plasmas are additionally heated by higher-harmonics ion-cyclotron-range-of frequency heating, heated by neutral beam injection, or strongly gas puffed, the intensity of zonal flows in the geodesic acoustic mode frequency range in the tokamak core plasma decreases sharply and that of low-frequency zonal flow grows drastically. This is accompanied by a damping of the drift wave propagating in the electron diamagnetic drift direction, turbulence by trapped electron mode (TEM), and the increase of the mode propagating to ion diamagnetic drift direction (ITG). In the half-radius region, TEM and high-frequency zonal flows remain intense in both OH and heated phases. ITG and low-frequency zonal flows grow in heated plasmas, suggesting a strong coupling between ITG and low-frequency zonal flow.  相似文献   

5.
沈勇  董家齐  徐红兵 《物理学报》2018,67(19):195203-195203
托卡马克实验发现,在不同参数条件下,等离子体能量约束经验定标律会有或大或小的修正.为解释这种修正现象发生的原因,应用回旋动理学方法,对含重(钨)杂质等离子体离子温度梯度(ITG)(包括杂质模)湍流输运的同位素效应进行了数值研究.结果表明钨杂质效应极大地修改了同位素定标律和有效电荷效应.随着杂质离子电荷数Z和电荷集中度f_z的变化,同位素定标律在较大范围内变化. ITG模最大增长率定标大约为M_i~(-0.48→-0.12),杂质模的定标为M_i~(-0.46→-0.3),其中, M_i表示主离子质量数.在ITG模湍流中,有效电荷数越大,关于M_i的拟合指数偏离-0.5越远,表现为同位素质量依赖减弱.在两种模中,杂质电荷集中度越大,同位素质量依赖越弱.研究了杂质效应使定标关系发生偏离的原因,证实杂质种类、杂质电荷数和杂质浓度的不同,是引起同位素质量依赖发生改变的重要原因.结果证实并解释了不同参数条件下托卡马克同位素定标的差异性.研究成果可以为ITER实验安排及杂质相关输运实验中选择装置材料、工作气体和设置其他参数提供理论参考.  相似文献   

6.
In tokamak plasmas, it is recognized that ITG (ion temperature gradient instability) and trapped electron modes (TEM) are held responsible for turbulence giving rise to anomalous transport. The present work focuses on the building of a model including trapped kinetic ions and trapped kinetic electrons. For this purpose, the dimensionality is reduced by averaging the motion over the cyclotron motion and the “banana” orbits, according to the fact that the instabilities are characterized by frequencies of the order of the low trapped particle precession frequency. Moreover, a set of action-angle variables is used. The final model is 4D (two-dimensional phase space parametrized by the two first adiabatic invariants namely the particle energy and the trapping parameter). In this paper, the trapped ion and electron modes (TIM and TEM) are studied by using a linear analysis of the model. This work is currently performed in order to include trapped electrons in an existing semi lagrangian code for which TIM modes are already taken into account. This study can be considered as a first step in order to include kinetic trapped electrons in the 5D gyrokinetic code GYSELA [J. Abiteboul et al., ESAIM Proc. 32, 103 (2011)].  相似文献   

7.
陆赫林  王顺金 《物理学报》2009,58(1):354-362
在离子温度梯度模(ITG)湍流背景中,通过最小自由度模型中模耦合方式产生带状流,对此模型做了动力学稳定性分析及数值求解.并在此基础上初步探讨了湍流中漂移波与带状流的能量转移,以及雷诺协强与带状流的关系. 关键词: 等离子体 离子温度梯度模 湍流 带状流  相似文献   

8.
The effect of collisional damping of zonal flows (ZFs) on ion-temperature gradient (ITG) driven turbulence in a toroidal plasma is investigated by means of a 3D global fluid model with flux boundary conditions. Results from simulations show an increase of the energy confinement time and a stabilization of turbulence with the inverse of the collisionality nu(*). The stabilization mechanism is identified as an effect of the increased shearing rate of ZFs, which shift upwards the ITG turbulence effective threshold. The shearing rate of ZFs is also seen to depend on the injected power. As a consequence, the effective heat conductivity depends parametrically on the input power.  相似文献   

9.
There is strong evidence in favor of zonal flow suppression in the Ion-Temperature-Gradient (ITG) mode turbulence, specifically close to the linear stability threshold. The present Letter attempts to analytically calculate the effects of zonal flow suppression of the ITG turbulence by deriving a modified dispersion relation including the back-reaction of the zonal flows on the ITG turbulence based on the quasilinear theory. The results are manifested in a reduction of the linear growth rate and an increase in the effective linear ITG threshold.  相似文献   

10.
Ion-temperature-gradient turbulence constitutes a possibly dominant transport mechanism for optimized stellarators, in view of the effective suppression of neoclassical losses characterizing these devices. Nonlinear gyrokinetic simulation results for the Wendelstein 7-X stellarator [G. Grieger, in (IAEA, Vienna, 1991) Vol. 3, p. 525]-assuming an adiabatic electron response-are presented. Several fundamental features are discussed, including the role of zonal flows for turbulence saturation, the resulting flux-gradient relationship, and the coexistence of ion-temperature-gradient modes with trapped ion modes in the saturated state.  相似文献   

11.
The relation between magnetic geometry and the level of ion-temperature-gradient (ITG) driven turbulence in stellarators is explored through gyrokinetic theory and direct linear and nonlinear simulations. It is found that the ITG radial heat flux is sensitive to details of the magnetic configuration that can be understood in terms of the linear behavior of zonal flows. The results throw light on the question of how the optimization of neoclassical confinement is related to the reduction of turbulence.  相似文献   

12.
陆赫林  陈忠勇  李跃勋  杨恺 《物理学报》2011,60(8):85202-085202
对离子温度梯度模湍流非线性流体方程进行了解耦处理,得到包含磁场剪切效应的带状流与漂移波相互作用的非线性动力学方程.采用调制不稳定性的四波相互作用模型,研究了磁场剪切对带状流产生的影响.研究表明,在k//值较小的范围内,当|k//|增加时,带状流的增长率也呈增加的趋势. 关键词: 托卡马克等离子体 离子温度梯度模湍流 带状流 磁场剪切  相似文献   

13.
The reduction of energy and particle losses with the increasing mass of the hydrogen isotope is more pronounced under conditions of improved confinement when the dominant ion temperature gradient instability is suppressed and other channels of anomalous transport are of importance. In this Letter, we reconsider the dissipative trapped electron (DTE) instability by taking into account finite Larmor radius effects in the analysis of the ion response to perturbations. By applying the improved mixing length approximation in order to estimate the transport coefficients, it is demonstrated that DTE contribution is intrinsically dependent on the isotope mass and provides a plausible explanation for the isotope effect. Contrary to the common belief, it is shown that the DTE turbulence may be of importance for reactor plasmas of low collisionality.  相似文献   

14.
A new dispersion relation for the ion temperature gradient (ITG) driven instability in toroidal plasma is derived from the reduced Braginskii equations. It includes the effects of both the safety factor q and the adiabatic electron temperature gradient . The present model reproduces the basic properties of ITG instability obtained by previous works. On the other hand, it is found numerically that the safety factor q enhances the ITG instabilities while the quantity reduces them .  相似文献   

15.
Gyrokinetics is widely applied in plasma physics. However, this framework is limited to weak turbulence levels and low drift-wave frequencies because high-frequency gyro-motion is reduced by the gyro-phase averaging. In order to test where gyrokinetics breaks down, Waltz and Zhao developed a new theory, called cyclokinetics [R. E. Waltz and Zhao Deng, Phys. Plasmas 20, 012507 (2013)]. Cyclokinetics dynamically follows the high-frequency ion gyro-motion which is nonlinearly coupled to the low-frequency drift-waves interrupting and suppressing gyro-averaging. Cyclokinetics is valid in the high-frequency (ion cyclotron frequency) regime or for high turbulence levels. The ratio of the cyclokinetic perturbed distribution function over equilibrium distribution function δf/F can approach 1.This work presents, for the first time, a numerical simulation of nonlinear cyclokinetic theory for ions, and describes the first attempt to completely solve the ion gyro-phase motion in a nonlinear turbulence system. Simulations are performed [Zhao Deng and R. E. Waltz, Phys. Plasmas 22(5), 056101 (2015)] in a local flux-tube geometry with the parallel motion and variation suppressed by using a newly developed code named rCYCLO, which is executed in parallel by using an implicit time-advanced Eulerian (or continuum) scheme [Zhao Deng and R. E. Waltz, Comp. Phys. Comm. 195, 23 (2015)]. A novel numerical treatment of the magnetic moment velocity space derivative operator guarantee saccurate conservation of incremental entropy.By comparing the more fundamental cyclokinetic simulations with the corresponding gyrokinetic simulations, the gyrokinetics breakdown condition is quantitatively tested. Gyrokinetic transport and turbulence level recover those of cyclokinetics at high relative ion cyclotron frequencies and low turbulence levels, as required. Cyclokinetic transport and turbulence level are found to be lower than those of gyrokinetics at high turbulence levels and low-Ω* values with stable ion cyclotron modes. The gyrokinetic approximation is found to break down when the density perturbation exceeds 20%, or when the ratio of nonlinear E×B frequency over ion cyclotron frequency exceeds 20%. This result indicates that the density perturbation of the Tokamak L-mode near-edge is not sufficiently large for breaking the gyro-phase averaging. For cyclokinetic simulations with sufficiently unstable ion cyclotron (IC) modes and sufficiently low Ω* ~10, the high-frequency component of the cyclokinetic transport can exceed that of the gyrokinetic transport. However, the low-frequency component of the cyclokinetic transport does not exceed that of the gyrokinetic transport. For higher and more physically relevant Ω* ?50 values and physically realistic IC driving rates, the low-frequency component of the cyclokinetic transport remains smaller than that of the gyrokinetic transport. In conclusion, the “L-mode near-edge short-fall” phenomenon, observed in some low-frequency gyrokinetic turbulence transport simulations, does not arise owing to the nonlinear coupling of high-frequency ion cyclotron motion to low-frequency drift motion.  相似文献   

16.
Correlation of density turbulence suppression and reduced plasma transport is observed in the internal transport barrier (ITB) region of JET tokamak discharges with optimized magnetic shear. The suppression occurs in two stages. First, low frequency turbulence and ion transport are reduced across the plasma core by a toroidal velocity shear generated by intense auxiliary heating. Then with the ITB formation, high frequency turbulence and electron transport are reduced locally within the steep pressure gradient region of the ITB.  相似文献   

17.
High-resolution measurements of impurity ion dynamics provide first-time evidence of classical ion confinement in a toroidal, magnetically confined plasma. The density profile evolution of fully stripped carbon is measured in MST reversed-field pinch plasmas with reduced magnetic turbulence to assess Coulomb-collisional transport without the neoclassical enhancement from particle drift effects. The impurity density profile evolves to a hollow shape, consistent with the temperature screening mechanism of classical transport. Corroborating methane pellet injection experiments expose the sensitivity of the impurity particle confinement time to the residual magnetic fluctuation amplitude.  相似文献   

18.
简广德  董家齐 《物理学报》2005,54(4):1641-1647
用积分本征模方程研究了在托卡马克等离子体中包含全部动力学效应的动力剪切阿尔芬波模 (无论是否存在温度梯度). 引入了一个新的积分变量,将实平面的积分解析延拓到复平面. 这样可以同时研究增长模和阻尼模. 结果表明,在有离子温度梯度(ITG)的情况下,激发动 力剪切阿尔芬不稳定性所需的等离子体压强梯度比激发理想磁流体动力学气球模不稳定性的 阈值低得多,没有ITG时两者相同. 与动力无碰撞气球模结果不同,当有限ITG存在时,剪切 阿尔芬模存在第二稳定区. 关键词: 动力剪切阿尔芬模 磁流体气球模 阈值压强梯度  相似文献   

19.
Comprehensive analysis of the largest first-principles simulations to date shows that stochastic wave-particle decorrelation is the dominant mechanism responsible for electron heat transport driven by electron temperature gradient turbulence with extended radial streamers. The transport is proportional to the local fluctuation intensity, and phase-space island overlap leads to a diffusive process with a time scale comparable to the wave-particle decorrelation time, determined by the fluctuation spectral width. This kinetic time scale is much shorter than the fluid time scale of eddy mixing.  相似文献   

20.
Energy transport by the electrons in a tokamak is examined in steady-state and power modulation experiments using electron cyclotron heating. The results are consistent with the assumption that temperature profiles are limited by a critical gradient length, leading to "stiff" profiles. The modulation experiments show that the stiffness factor increases with temperature. They strongly suggest that turbulence driven by the electron temperature gradient may be a dominant mechanism of electron transport. Although possibly not universal, these results are valid under various plasma conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号