首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The moving antiferromagnetic vortices are accompanied by solitary deflection waves. These waves allow to investigate generation and nonlinear dynamics of the antiferromagnetic vortices on the moving domain wall with the help of the two- and three-fold digital high speed photography. On the quasi-relativistic domain wall the vortex dynamics is quasi-relativistic with the limiting velocity c=20 km/s, which is equal to the spin-wave velocity. The solitary deflection waves dynamics can be explained assuming existence of the gyroscopic force. A theory for the gyroscopic force in the orthoferrite domain wall is elaborating by A.K. Zvezdin et al. currently. We present a comparison of the theoretical and experimental results on the dynamics of the solitary deflection waves, which accompany the antiferromagnetic vortices in the domain wall of orthoferrites.  相似文献   

2.
The problem of steady motion of the magnetic vortex in a moving domain wall under the action of the Magnus force in weak ferromagnets was studied. Dynamic bending of the domain wall containing a moving vortex was analyzed. The formulas describing the dependences of the vortex velocity on the velocity of the domain wall in which it moves were derived.  相似文献   

3.
The problem of steady motion of the magnetic vortex in a moving domain wall under the action of the Magnus force in weak ferromagnets was studied. Dynamic bending of the domain wall containing a moving vortex was analyzed. The formulas describing the dependences of the vortex velocity on the velocity of the domain wall in which it moves were derived.  相似文献   

4.
The problem on spectrum of linear excitations in the presence of a moving domain wall in 1D Heisenberg ferromagnet with orthorhombic anisotropy is exactly solved. The explicit expressions for spin waves scattering on the domain wall are obtained. The phase shift of a spin wave, as the result of collision of spin wave with a moving wall, is exactly determined. The change in magnon density of states is calculated from this scattering data, and the contribution of domain walls to the classical low-temperature thermodynamics is found.  相似文献   

5.
Using Galileo's transformation for moving to the rest frame of the Bloch wall in the exchange-free magnetostatic approximation, we obtain the dispersion relation for a shear surface wave guided by a moving 180-degree domain boundary of a ferromagnetic crystal. It is found that the motion of the domain boundary has the orienting action on the wave normal of the shear surface wave and significantly changes the spectrum of forward-propagating waves in the frequency band below the scattered-field ferromagnetic resonance.  相似文献   

6.
The spinmotive force associated with a moving domain wall is observed directly in Permalloy nanowires using real time voltage measurements with proper subtraction of the electromotive force. Whereas the wall velocity exhibits nonlinear dependence on magnetic field, the generated voltage increases linearly with the field. We show that the sign of the voltage reverses when the wall propagation direction is altered. Numerical simulations explain quantitatively these features of spinmotive force and indicate that it scales with the field even in a field range where the wall motion is no longer associated with periodic angular rotation of the wall magnetization.  相似文献   

7.
A research has been conducted into the dynamics of the 180° domain wall in a cubic ferromagnet with induced magnetic anisotropy, this domain wall moving at a velocity close to the limit one. The Landau–Lifshits equation has been reduced to a modified double Sine–Gordon equation with the highest dispersion. A solution has been found which corresponds to the moving 180° domain wall. This paper has determined the dependencies of the velocity of the domain wall's stationary movement on the quality factor and on the ratio of the induced and the cubic magnetic anisotropy constants in slabs with the developed (0 0 1) and (0 1 1) surfaces.  相似文献   

8.
The boundary-value problem of the interaction of a plane monochromatic shear wave with a moving Bloch wall in an iron garnet crystal is solved in the framework of the nonexchange magnetostatic approximation on the basis of the method of phase invariants for wave problems with moving boundaries. For a shear wave incident on the domain wall, the possibility of the reflectionless birefringence is demonstrated. Numerical results illustrating the resonance properties of the magnetic subsystem are presented. It is established that, at the upper bound of the reflectionless birefringence range, the interaction of the shear wave with the domain wall manifests itself as a degenerate resonance with the solution in the form of two combined antiphase, collinearly propagating shear waves of infinitely large amplitudes, which form a zero resulting field.  相似文献   

9.
The amplitude-frequency characteristics of magnetoelastic surface waves excited by moving domain walls in a lamellar yttrium orthoferrite samples are discovered and measured. The results of analysis of the effect of magnetoelastic surface waves on the dynamics of domain walls in this orthoferrite are considered. The nonlinear interaction between magnetoelastic surface waves accompanying a moving domain wall is analyzed.  相似文献   

10.
Investigation of surface domain walls motion in Co-rich magnetic microwires has been performed in circular and axial magnetic fields. The dc axial magnetic field acceleration of the domain wall motion related to the influence of the axial field on the structure of the moving domain wall has been discovered. Pulsed axial magnetic field induced unidirectional motion of surface domain wall also has been found.  相似文献   

11.
We propose a stochastic process wherein molecular transport is mediated by asymmetric nucleation of domains on a one-dimensional substrate, in contrast with molecular motors that hydrolyze nucleotide triphosphates and undergo conformational change. We show that asymmetric nucleation of hydrolysis waves on a track can also result in directed motion of an attached particle. Asymmetrically cooperative kinetics between hydrolyzed and unhydrolyzed states on each lattice site generate moving domain walls that push a particle sitting on the track. We use a novel fluctuating-frame, finite-segment mean field theory to accurately compute steady-state velocities of the driven particle and to discover parameter regimes yielding maximal domain wall flux, leading to optimal particle drift.  相似文献   

12.
The mode spectrum of electroacoustic boundary waves guided by a strip domain uniformly moving in a 4-mm ferroelectric is considered in the quasi-static approximation. The motion of the strip domain is found to cause the wave vector of the electroacoustic wave to be noncollinear with the guiding boundaries. The frequency dependences of the phase velocity are presented for the symmetric and antisymmetric modes of the electroacoustic wave. These dependences are compared in the reference system fixed to the strip domain and in the laboratory reference system. It is shown that, at low and moderate frequencies, the symmetric mode of the electroacoustic wave is more efficiently localized by a moving strip domain than by a single domain wall.  相似文献   

13.
The stable generation of pairs of antiferromagnetic vortices at a domain wall moving at a velocity of 12 km/s is investigated at the instant it passes through a defect in a thin plate of yttrium orthoferrite. The velocities of a vortex and an antivortex moving in opposite directions along the domain wall and being accompanied by solitary flexural waves are ±16 km/s. The total velocity of antiferromagnetic vortices is close to the maximum velocity of the domain wall, 20 km/s. Such a high velocity can only be due to the action of a quite large gyroscopic force. An external dc magnetic field (±400 Oe) applied along the b axis of the orthoferrite affects this velocity insignificantly. The effective magnetic field that violates the Lorentz invariance of the dynamics considerably exceeds this value.  相似文献   

14.
The influence of variable conductivity and thickness of two outer non-ferromagnetic layers on magnetization reversal of one central ferromagnetic layer is theoretically investigated. The model of a thin rigid 180°180° domain wall moving transversely through the axially magnetized ferromagnetic layer is used to calculate induced eddy currents in lamination from which the domain wall mobility is determined. The effect of asymmetric distribution of eddy currents around moving domain wall results in acceleration of the wall near the edge of the lamination. The known domain wall mobility in ferromagnetic lamination can then be used to determine either the conductivity or the thickness of deposited outer non-ferromagnetic layers as proposed in discussion.  相似文献   

15.
Reflection of solitary flexural waves propagating in a supersonic domain wall of yttrium orthoferrite from the domain wall part moving with the transverse-sound velocity is observed experimentally. This observation confirms that such a reflection of a solitary flexural wave leads to a change in the sign of the topological charge of the antiferromagnetic vortex accompanied by this wave, which proves a direct relationship between these two objects.  相似文献   

16.
Quantitative dependences of the velocity of a moving domain boundary and sizes of magnetic inhomogeneities in rare-earth orthoferrites are determined experimentally in real time. The results obtained agree satisfactorily with the parameters calculated for the physical model of parametric resonant deceleration of the domain boundary on wall (Winter) magnons. The lower threshold frequency of bending vibrations of the domain wall is of the order of 108 Hz.  相似文献   

17.
An exact solution of the equation for spin waves propagating along the normal to the domain wall is derived for a ferromagnet with a 180° domain wall moving at constant speed, and the radiation of spin waves in rf fields is investigated.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 66–69, April, 1979.  相似文献   

18.
This letter presents a new detection technique, called dynamic neutron depolarization technique, to study the shape of a moving domain wall within the bulk. Using this technique the motion of a single 180° domain wall in a FeSi (3.5 wt % Si) picture frame crystal has been investigated.  相似文献   

19.
Significant frequency dependence of domain wall coercive field, due to the widening of the hysteresis loops, was observed based on AC hysteresis curve measurements in epitaxial magnetic garnet films. Domain wall oscillation measurements did not reveal any frequency dependence. The different results of the two measurement methods were analyzed, and the observed frequency dependence was attributed to the inertia of the moving domain walls. It was shown that the real value of the domain wall pinning field cannot be determined by AC hysteresis measurements, even in non-conducting materials.  相似文献   

20.
Small helical anisotropy was induced in amorphous ferromagnetic Co68.2Fe4.3Si12.5B15 wire by current annealing and simultaneous application of tensile stress and torsion. Presence of helical anisotropy was confirmed by measurement and analysis of the circular magnetic flux versus axial magnetic field hysteresis loops. These measurements also showed that a single domain wall between circular domains can be created by placing the wire in a sufficiently high inhomogeneous magnetic field generated by Helmholtz coils with opposite currents. The domain wall velocity versus axial driving field was measured. The results show that the basic dynamic properties (magnitude of the wall mobility, field interval in which linear dependencies between velocity and field are observed, accelerated increase of the velocity for higher fields) are very similar to those obtained for the domain wall between circular domains driven by a constant circular field. The Hall effect was detected in the eddy current loop generated by the moving domain wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号