首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structures of Cs[CuB10H10] (I) and (CH3)2NH2[CuB10H10] (II) are studied (R = 0.0398 and 0.0510 for 1225 and 2728 observed reflections in I and II, respectively). Crystals I and II are built of [(CuB10H10)?]∞ anionic chains and cations. The distorted tetrahedral coordination of the Cu+ ions is formed by four pairs of B-H atoms from two polyhedral anions. The Cu-B bond lengths in I and II are 2.159–2.287(6) and 2.130–2.285(9) Å, respectively. The coordination of the Cu+ ions in II includes only edges between apical and equatorial vertices of the anions. In I, both the edges of the apical belt and those between two equatorial vertices are involved in coordination. The ability of the B10H 10 2? anion to coordinate metals by the equatorial edge is established for the first time.  相似文献   

2.
Two crystalline modifications (I and II) of the phenanthroline complex of erbium nitrate with the same chemical composition, Er(NO3)3(Phen)2, are synthesized by a procedure similar to that used for preparing the phenanthroline complexes of europium nitrate. The crystal structures of these modifications are determined using X-ray diffraction. Crystals of compound I belong to the isostructural family Ln(NO3)3(Phen)2 (Ln = La-Lu). Crystals of compound II are isostructural to those of modification II (new phase) of the Eu(NO3)3(Phen)2 compound. Crystals of I and II are monoclinic, space group C2/c, and Z = 4. The unit cell parameters are as follows: a = 11.126 Å, b = 17.815 Å, c = 12.976 Å, β = 100.45°, and V = 2529 Å3 for modification I and a = 9.459 Å, b = 15.463 Å, c = 17.076 Å, β = 93.52°, and V = 2493 Å3 for modification II. The molecular complexes in the structures of compounds I and II are nearly identical. The mean lengths of the Er-N and Er-O bonds are equal to 2.500 and 2.466 Å in compound I and 2.508 and 2.457 Å in compound II, respectively. The difference between the structures of compounds I and II is associated with the difference between intermolecular interactions in the unit cell.  相似文献   

3.
Two crystalline modifications (I and II) of the phenanthroline complex of europium nitrate with the same chemical composition, Eu(NO3)3(Phen)2, are synthesized under different conditions by varying the solvents, temperatures, and crystallization rates. The crystal structures of these modifications are determined using X-ray diffraction. Crystalline modifications I and II differ in the unit cell parameters and the positions of the complexes in the unit cell. The geometric characteristics of the complexes in the structures of compounds I and II differ insignificantly. Crystals of compound I belong to the isostructural family Ln(NO3)3(Phen)2 (Ln = La-Lu). Crystals of compound II (new phase) are studied for the first time. Crystals of I and II are monoclinic, space group C2/c, and Z = 4. The unit cell parameters are as follows: a = 11.1555(10) Å, b = 17.9698(10) Å, c = 13.0569(10) Å, β = 100.507(10)°, and V = 2572.1(3) Å3 for modification I and a = 9.5153(10) Å, b = 15.4546(10) Å, c = 17.1763(10) Å, β = 93.451(10)°, and V = 2521.3(3) Å3 for modification II. The difference between the molecular complexes in the structures of compounds I and II is revealed by the superposition method. Complexes II are arranged along the C 2 axis and are statistically disordered with respect to this axis.  相似文献   

4.
Crystalline hydrogen selenate-phosphates M 2H3(SeO4)(PO4) [M = Rb (I) or K (II)] and M 4H5(SeO4)3(PO4) [M = K (III) or Na (IV)] were obtained by reactions of Rb, K, and Na carbonates with mixtures of selenic and phosphoric acid solutions. The X-ray structure study of single crystals revealed that I and II are isostructural (sp. gr. Pn). In these structures, SeO4 and H3PO4 tetrahedra are linked by hydrogen bonds to form corrugated layers. Structures III and IV (sp. gr. $P\bar 1$ ) have similar arrangements of non-hydrogen atoms but different hydrogen-bond systems. In III = K4(HSeO4)2{H[H(Se,P)O4]2}, the HSeO4 groups branch from the infinite anionic {H[H(Se,P)O4]2} chains. In IV = Na4[H(SeO4)2]{H[H1.5(Se, P)O4]2}, the anionic {H[H1.5(Se,P)O4]2} chains are crosslinked by hydrogen bonds formed by the [H(SeO4)2] dimers.  相似文献   

5.
Single crystals of acid salt hydrates M I{M II[H(XO4)2](H2O)2}, where M I, M II, and X are K, Zn, and S (I); K, Mn, and S (II); Cs, Mn, and S (III); or K, Mn, and Se (IV), respectively, were synthesized and studied by X-ray diffraction analysis. Compounds I–IV (space group $P\bar 1$ ) are isostructural to each other and to hydrate KMg[H(SO4)2](H2O)2 (V) studied earlier. Structures I–V, especially, the M I-O, M II-O, and X-O distances and the O?H?O (2.44–2.48 Å) and Ow-H?O (2.70–2.81 Å) hydrogen bonds, are discussed.  相似文献   

6.
Single crystals of UO2(n-C3H7COO)2(H2O)2 (I) and Mg(H2O)6[UO2(n-C3H7COO)3]2 (II) are synthesized. Their IR-spectroscopic and X-ray diffraction studies are performed. Crystals I are monoclinic, a = 9.8124(7) Å, b = 19.2394(14) Å, c = 12.9251(11) Å, β = 122.423(1)°, space group P21/c, Z = 6, and R = 0.0268. Crystals II are cubic, a = 15.6935(6) Å, space group $Pa\bar 3$ , Z = 4, and R = 0.0173. The main structural units of I and II are [UO2(C3H7COO)2(H2O)2] molecules and [UO2(C3H7COO)3]? anionic complexes, respectively, which belong to AB 2 01 M 2 1 (I) and AB 3 01 (II) crystal chemical groups of uranyl complexes (A = UO 2 2+ , B 01 = C3H7COO?, and M 1 = H2O). A crystal chemical analysis of UO2 L 2 · nH2O compounds, where L is a carboxylate ion, is performed.  相似文献   

7.
Double zirconium and 3d-transition metal phosphates of the compositions M 0.5Zr2(PO4)3[M = Mn (I), Co (II), Ni (III), Cu (IV), Zn (V)] have been synthesized and the types of their structures have been refined. Compounds I, II, III, IV, and V are all monoclinic (sp. gr. P21/n, Z = 4) and have the unit cell parameters a = 12.390(3), 12.389(3), 12.385(3), 12.389(3), 12.389(2) Å; b = 8.931(4), 8.928(3), 8.924(4), 8.925(4), 8.929(3) Å; c = 8.843(3), 8.840(2), 8.840(3), 8.841(3), 8.842(2) Å, β = 90.55(1), 90.54(1), 90.53(1), 90.53(1), 90.54(1)°; V = 978.5, 977.7, 977.0, 977.4, 978.1 Å3, respectively. All the structures have the {[Zr2(PO4)3]?}3-type frameworks. The crystallographic data for 3d-transition and alkali earth metal phosphates described by the general formula M 0.5Zr2(PO4)3 are compared.  相似文献   

8.
Treatment of [2.2.2]cryptand1 in toluene with HI(g) has resulted in the formation of a twophase liquid clathrate solution from which the complex [NH(CH2CH2I)3][I5]2 has been isolated and crystallographically characterized. Crystal data for2: triclinic, space group $P\bar 1$ ,a=9.301(3) Å,b=10.419(3) Å,c=11.078(3) Å, α=90.20(2)o, β=103.28(2)o γ=96.50(2)o,D c =3.57g/cm3,Z=2,R f =0.054,R w =0.054. The salt is a product of an ether cleavage of the macrobicycle. The crystal structure of2 contains [NH(CH2CH2I)3]+ ions and zigzag chains of [I5]? ions which self-assemble to form alternating layers, of cations and anions.  相似文献   

9.
Thiosemicarbazide complexes of nickel(II) [Ni(TSC)2](HSal)2 (I) and copper(II) [Cu(TSC)2](HSal)2 (Ia) (TSC is thiosemicarbazide and HSal is a salycilate anion), as well as complexes [Ni(TSC)2](SO4) · 2H2O (II) and [Ni(TSC)3]Cl2 · H2O (III), are synthesized and characterized by IR spectroscopy and X-ray diffraction. Monoclinic crystals I and Ia are isostructural; space group P21/n, Z = 2. Crystals II are monoclinic, space group P21/m, Z = 2. Crystals III are orthorhombic, space group Pbca, Z = 8. In I and Ia, two planar salycilate anions sandwich a planar centrosymmetric [Ni(TSC)2]2+ cation to form a supermolecule. The cation and anions are additionally bound by hydrogen bonds. Other hydrogen bonds connect supermolecules into planar layers. In structure II, centrosymmetric [Ni(TSC)2]2+ cations are connected by ??-stacking interactions into supramolecular ensembles of a specific type. The ensembles, water molecules, and (SO4)2? anions are bound in the crystal via hydrogen bonds. In the [Ni(TSC)3]2+ cation of structure III, ligands coordinate the Ni atom by the bidentate chelate pattern with the formation of five-membered metallocycles. These metallocycles have an envelope conformation unlike those in I and II, which are planar. In III (unlike in analogous complexes), a meridional isomer of the coordination octahedron of the Ni atom is formed. Together with Cl1? and Cl2? anions, cations form supermolecules, which are packed into planar layers with a square-cellular structure. The layers are linked by hydrogen bonds formed by crystallization water molecules that are located between the layers.  相似文献   

10.
Double potassium indium and rubidium indium phosphates K3In(PO4)2 (I) and Rb3In(PO4)2 (II) are synthesized by solid-phase sintering at T = 900°C. The compounds prepared are characterized by X-ray powder diffraction (I and II), X-ray single-crystal diffraction (II), and laser-radiation second harmonic generation. Structure I is solved using the Patterson function and refined by the Rietveld method. Both compounds crystallize in the monoclinic crystal system. For crystals I, the unit cell parameters are as follows: a = 15.6411(1) Å, b = 11.1909(1) Å, c = 9.6981(1) Å, β = 90.119(1)°, space group C2/c, R p = 4.02%, and R wp = 5.25%. For crystals II, the unit cell parameters are as follows: a = 9.965(2) Å, b = 11.612(2) Å, c = 15.902(3) Å, β = 90.30(3)°, space group P21/n, R 1 = 4.43%, and wR 2 = 10.76%. Structures I and II exhibit a similar topology of the networks which are built up of { In[PO4]2} (I) and { In2[PO4]4} (II) structural units.  相似文献   

11.
A product of the insertion of two isothiocyanate molecules into the same W-Cl bond, namely, W-Cl-WCl5{N(Et)C(S)N(Et)C(S)Cl} (I), is synthesized by the reaction of WCl6 with EtNCS in a dichloroethane solution. The hydrolysis of compound I results in the formation of single crystals of the complex . The structure of crystals II is determined using X-ray diffraction. It is demonstrated that structural units of crystals II are the [WVIOCl5]? anionic complexes and the ethyl-(4-ethyl-5-thioxo[1.2.4]dithiazolidin-3-ylidene)ammonium cations.  相似文献   

12.
The crystal structures of salicylideneguanylhydrazinium chloride hydrate hemiethanol solvate (I), salicylideneguanylhydrazinium trichloroaquacuprate(II) (II), and bis(salicylideneguanylhydrazino)cobalt(III) chloride trihydrate (III) are determined using X-ray diffraction. The structures of compounds I, II, and III are solved by direct methods and refined using the least-squares procedure in the anisotropic approximation for the non-hydrogen atoms to the final factors R = 0.0597, 0.0212, and 0.0283, respectively. In the structure of compound I, the monoprotonated molecules and chlorine ions linked by hydrogen bonds form layers aligned parallel to the (010) plane. In the structure of compound II, the salicylaldehyde guanylhydrazone cations and polymer chains consisting of trichloroaquacuprate(II) anions are joined by an extended three-dimensional network of hydrogen bonds. In the structure of compound III, the [Co(LH)2]+ cations, chloride ions, and molecules of crystallization water are linked together by a similar network.  相似文献   

13.
The crystal structures of {4-bromo-2-[(2-hydroxyethylimino)-methyl]phenolo}aquacopper(II) nitrate hemihydrate (I), chloro-{4-bromo-2-[(2-hydroxyethylimino)-methyl]phenolo}copper hemihydrate (II), and chloro-{4-bromo-2-[(2-hydroxyethylimino)-methyl]phenolo}aquanickel (III) are determined using X-ray diffraction. Crystals of compound I are formed by cationic complexes, nitrate ions, and solvate water molecules. In the cation, the copper atom coordinates the singly deprotonated molecule of tridentate azomethine and the water molecule. The copper complexes are joined into centrosymmetric dimers by the O w -H···O hydrogen bonds. The crystal structure of compound II is composed of binuclear copper complexes and solvate water molecules. The copper atom coordinates the O,N,O ligand molecule and the chlorine ion, which fulfills a bridging function. The coordination polyhedron of the metal atom is a distorted tetragonal bipyramid in which the vertex is occupied by the chlorine atom of the neighboring complex in the dimer. Compound III is a centrosymmetric dimer complex. The coordination polyhedra of two nickel atoms related via the inversion center are distorted octahedra shared by the edge.  相似文献   

14.
Compounds dinitrato(2-formylpyridinesemicarbazone)copper (I), dichloro(2-formylpyridinesemicarbazone) copper hemihydrate (II), and bis(2-formylpyridinesemicarbazone)copper(2+) perchlorate hydrate (III) are synthesized and their crystal structures are determined. In compounds IIII, the neutral 2-formylpyridine semicarbazone molecule (L) is tridentately attached to the copper atom via the N,N,O set of donor atoms. In compounds I and II, the Cu: L ratio is equal to 1: 1, whereas, in III, it is 1: 2. In complex I, the coordination sphere of the copper atom includes two nitrate ions with different structural functions in addition to the L ligand. The structure is built as a one-dimensional polymer in which the NO3 bidentate group fulfills a bridging function. The coordination polyhedron of the copper(2+) atom can be considered a distorted tetragonal bipyramid (4 + 1 + 1). Compound II has an ionic structure in which the main element is the [CuLCl2 · Cu(H2O)LCl]+ dimer. In the dimer, the copper atoms are linked via one of the μ2-bridging chlorine atoms. The coordination polyhedra of the central atoms of the Cu(H2)LCl and CuLCl2 complex fragments are tetragonal bipyramid and tetragonal pyramid, respectively. In compound III, the copper atom is octahedrally surrounded by two L ligands in the mer configuration.  相似文献   

15.
The molecular and crystal structures of chiral 1R, 4R-cis-2-(4-hydroxybenzylidene)-p-menthan-3-one (I) are determined by X-ray diffraction analysis. Single crystals of I are orthorhombic, a = 8.997(2) Å, b = 11.314(2) Å, c = 14.847(3) Å, V = 1511.3(5) Å3, Z = 4, and space group P212121. The cyclohexanone ring in molecules of compound I has a chair-type conformation with the axial methyl and equatorial isopropyl groups. The enone and benzylidene groupings are nonplanar. The considerable distortion of bond angles at the sp 2 carbon atoms of the benzylidene grouping and the puckering parameters of the cyclohexanone ring in the structure of I are close to those observed for the previously studied compound with the p-methoxy substituent. In the crystal, molecules I are linked by very short intermolecular hydrogen bonds .  相似文献   

16.
The crystal structures of bis{4-bromo-2-[(2-hydroxyethylimino)methyl]phenolato}copper (I) and bis{4-chloro-2-[(2-hydroxyethylimino)methyl]phenolato}copper (II) are determined. Crystals I are monoclinic, space group P21/c, Z = 2, and R = 0.0732 (for all reflections). Crystals II are likewise monoclinic, space group P21/n, Z = 2, and R = 0.1106. In the structures of compounds I and II, the metal atom is situated at the center of symmetry and coordinated by two singly deprotonated bidentate 4-bromo-or 4-chloro-2-[(2-hydroxyethylimino)methylphenol molecules, respectively, through phenol oxygen and azomethine nitrogen atoms, which form a distorted planar square. In the structures of compound II, the coordination polyhedron of the central atom is completed to an elongated tetragonal bipyramid by the amino alcohol oxygen atoms of the adjacent complexes.  相似文献   

17.

A co-crystal of cobalt(II) complexes, Co(AMTTO)2(CH3CN)2]2+(NO3)2. [Co(AMTTO)2(H2O)2]2+(NO3)2, compound (1) was isolated from the reaction of Co(NO3)2?6H2O and 4-amino-3-mercapto-6-methyl-5-oxo-1,2,4-triazine (AMTTO) in acetonitrile as solvent. Isolated crystals were characterized by elemental analyses, IR spectroscopy as well as X-ray diffraction studies. Crystal data for 1 at 95 K revealed a monoclinic space group P21/n, a?=?11.7903(5), b?=?12.1279(5), c?=?14.1443(6) Å, β?=?99.244(4)°, Z?=?2, R1?=?0.0339. Compound 1 consists of two co-crystallized Co(II) complexes [Co(AMTTO)2(CH3CN)2]2+ and [Co(AMTTO)2(H2O)2]2+ and four nitrate counter anions In both complexes, cobalt(II) ions are in an octahedral arrangement. Two S, N bidentate AMTTO ligands are coordinated to both Co(II) ions. The coordination sphere of Co1 is completed by two acetonitrile molecules, and these positions are occupied by water molecules for Co2.

Graphic Abstract

A co-crystal of cobalt(II) compound was isolated from the reaction of Co(NO3)2?6H2O and 4-amino-3-mercapto-6-methyl-5-oxo-1,2,4-triazine in acetonitrile as solvent.

  相似文献   

18.
A combinatorial-topological analysis of the La3Ga[6]Ga 4 [4] Ge[4]O14 and La3Ge[6]Ge 2 [5] Ge 2 [4] Ga[4]O16 gallogermanates, which have MT and MPT microporous frameworks composed of M octahedra (GeO6, GaO6), T tetrahedra (GeO4, GaO4), and P pyramids (GeO5), is performed using the method of coordination sequences with the TOPOS 3.2 program package. It is established that the La3Ga[6]Ga 4 [4] Ge[4]O14 gallogermanate is characterized by a crystal-forming net 6 6 6 (of the graphite type). A new type of the binodal net 6 10 1 0 + 6 10 (2: 1) is revealed in the La3Ge[6]Ge 2 [5] Ge 2 [4] Ga[4]O16 gallogermanate. The cyclic cluster precursors composed of six polyhedra with a lanthanum template atom at the center of the LaMT 5 and LaMP 3 T 3 clusters are identified by the two-color decomposition of the nets in the structures of the La3Ga[6]Ga 4 [4] Ge[4]O14 and La3Ge[6]Ge 2 [5] Ge 2 [4] Ga[4]O16 gallogermanates. The coordination numbers of the cluster precursors in these structures are found to be equal to 6 and 4 for two-dimensional nets and 8 and 6 for three-dimensional nets, respectively.  相似文献   

19.
The crystal structures of bis{2,4-dibromo-6-[(2-hydroxyethylamino)-methyl]phenolato}copper (I), bis{2,4-dichloro-6-[(2-hydroxyethylamino)-methyl]phenolato}copper (II), and bis{2-[(2-hydroxyethylamino)-methyl]-4,6-dinitrophenolato}copper (III) in which the metal atom is located at the center of symmetry are determined using X-ray diffraction. Crystals of compounds I and II are isostructural. The copper atom in the structures of compounds I and I coordinates two singly deprotonated bidentate molecules of the ligand through the phenol oxygen atoms and the azomethine nitrogen atoms with the formation of a distorted planar square. In the crystals, complexes I and II form one-dimensional infinite chains along the b axis. In the structure of compound III, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid with the base formed by the azomethine nitrogen atoms and the phenol oxygen atoms. Both vertices of the bipyramid are occupied by the oxygen atoms of the amino alcohol groups of the neighboring complexes, which are related to the initial complex through the center of symmetry. In turn, the oxygen atoms of the alcohol groups of the initial complex are located at the vertices of the coordination bipyramids of the metal atoms of the neighboring centrosymmetric complexes, thus forming infinite polymer chains along the a axis.  相似文献   

20.
Two crystal modifications (1o and 1y) of N-butyl-2-cyano-3-[4-(dimethylamino)phenyl]-2-propenamide, which differ in the color of crystals and the color of luminescence, have been studied by X-ray diffraction and spectral-luminescence methods. The corresponding bond lengths and bond angles in the molecules of two crystal modifications are virtually identical. In both crystal structures, there are two systems of weak intermolecular interactions: π-stacking interactions and -CN…H-N hydrogen bonds involving nitrile and NH groups. In the crystal structures, two hydrogen bonds connect pairs of molecules into centrosymmetric dimers. The N…H distances are 2.21 and 2.41 Å in 1o and 1y, respectively. The interplanar distances in the π-stacked systems of 1o and 1y are 3.33 and 3.41 Å, respectively. Both types of weak interactions are stronger in 1o than in 1y, which accounts for a larger shift of absorption and luminescence bands for the former compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号