首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王巍  刘晶晶  张龙 《应用化学》2013,30(4):389-393
以自制的乙酰丙酮钌配合物(Ru(acac)3)为催化剂,甲酸钠为氢供体,十六烷基三甲基溴化铵为乳化剂,研究了水溶液中催化硝基苯氢转移氢化制苯胺的工艺。 确定了适宜反应条件为:甲酸钠和硝基苯摩尔比为2∶1,反应温度80 ℃,反应时间4.0 h,Ru(acac)3用量为硝基苯质量的4%。 硝基苯的转化率和苯胺产率分别为100%和96.65%,表明Ru(acac)3对硝基苯氢转移氢化制苯胺具有优异的催化作用。  相似文献   

2.
The title compound, trimethoprim (TMP) formate [systematic name: 2,4‐di­amino‐5‐(3,4,5‐tri­methoxy­benzyl)­pyrimidin‐1‐ium formate], C14H19N4O3+·CHO2?, reveals a pseudo‐quadruple hydrogen‐bonding motif consisting of six N—H?O hydrogen bonds involving two unpaired TMP cations and two formate anions which are symmetrically disposed. The hydrogen‐bonding motif is strikingly comparable with that observed in other TMP salts where the amino­pyrimidine moieties of the TMP cations are centrosymmetrically paired. These conserved hydrogen‐bonding motifs may serve as robust synthons in crystal engineering and design. The characteristic pseudo‐quadruple hydrogen‐bonding motif and other intermolecular hydrogen bonds operating in the crystal form a two‐dimensional supramolecular sheet structure.  相似文献   

3.
Experiments have revealed that formate synthesis from carbon dioxide and hydrogen is structure insensitive to copper catalyst surfaces, while the reverse formate decomposition reaction is structure sensitive. The present ab initio density functional theory (DFT) calculations show that the reaction of CO2 with surface atomic hydrogen initially leads to the formation of unstable monodentate formate, which has similar adsorption energies on Cu(111), Cu(100), and Cu(110). The structure of the transition state is similar to that of monodentate formate. It is also shown that gaseous CO2 is directly reacted with surface hydrogen, as suggested by previous experiments. The position of the similar transition state and the direct reaction mechanism well explain the similar energetic pathways, that is, the structure insensitivity.  相似文献   

4.
The transfer semihydrogenation of alkynes to (Z)-alkenes shows excellent chemo- and stereoselectivity when using a zerovalent palladium(NHC)(maleic anhydride)-complex as precatalyst and triethylammonium formate as hydrogen donor. Studies on the kinetics under reaction conditions showed a broken positive order in substrate and first order in catalyst and hydrogen donor. Deuterium-labeling studies on the hydrogen donor showed that both hydrogens of formic acid display a primary kinetic isotope effect, indicating that proton and hydride transfers are separate rate-determining steps. By monitoring the reaction with NMR, we observed the presence of a coordinated formate anion and found that part of the maleic anhydride remains coordinated during the reaction. From these observations, we propose a mechanism in which hydrogen transfer from coordinated formate anion to zerovalent palladium(NHC)(MA)(alkyne)-complex is followed by migratory insertion of hydride, after which the product alkene is liberated by proton transfer from the triethylammonium cation. The explanation for the high selectivity observed lies in the competition between strongly coordinating solvent and alkyne for a Pd(alkene)-intermediate.  相似文献   

5.
The complexes formed by the double interaction established between RNA bases and guanidinium and formate ions, as a model for the interacting groups of arginine and glutamic or aspartic amino acid side chains, have been theoretically studied. A density functional theory method (B3LYP/6-31 + G**) has been used for this study. The range of interaction energies obtained allowed for a distinction between bidentate and bifurcate hydrogen bond interactions. The analysis of the electron density and the natural bond orbital analysis shows that these complexes are bound by double hydrogen bonds established between the donor and acceptor groups of guanidinium and formate respectively and those of the RNA bases. Comparisons are made with the results obtained in some previous theoretical and experimental studies.  相似文献   

6.
It is demonstrated by in situ IR spectroscopy that, in methanol conversion on ZrO2 and 5% Cu/ZrO2 catalysts, methoxy groups are present on the catalyst surface, which result from O-H or C-O bond breaking in the methanol molecule. Two types of formate complexes, localized on ZrO2 and CuO, are also observed. The formate complexes form via the oxidative conversion of the methoxy groups. There are two types of linear methoxy groups. First-type linear methoxy groups condense with the formate complex located on CuO to yield methyl formate and then CO and H2. Second-type methoxy groups appear as intermediate products in the formation of dimethyl ether. The main hydrogen formation reactions are the recombination of hydrogen atoms (which result from the interconversion of surface complexes) on copper clusters and the decomposition of methyl formate. The source of CO2 in the gas phase is the formate complex, and the source of CO is methyl formate. The effect of water vapor and oxygen the surface reactions and product formation is discussed.  相似文献   

7.
Tris(acetylacetonato)ruthenium(III)(Ru(acac)3) was synthesized with RuCl3·nH2O and acetylacetone as raw materials. The structure of Ru(acac)3 was identified by FI-IR, 1H NMR, 13C NMR, and elemental analysis. It was used in the catalytic hydrogen transfer hydrogenation of nitrobenzene with sodium formate as hydrogen donor. The effects of reaction conditions on the process, such as temperature, time, dosage of catalyst, and kinds of hydrogen donor, were investigated. The optimal reaction parameters were determined as follows: 80 °C, 4.0 h, the substrate nitrobenzene 20 mL, sodium formate 27.20 g, Ru(acac)3 0.96 g, the conversion of nitrobenzene is 100.0 %, the yield of aniline and the selectivity to aniline are 96.65 %. The reaction mechanism is proposed and analyzed. It exhibited excellent catalytic properties in the hydrogen transfer hydrogenation of nitrobenzene to aniline.  相似文献   

8.
To improve the hydrogen productivity and examine the hydrogen evolution mechanism of Clostridium paraputrificum, roles of formate in hydrogen evolution and effects of introducing formate-originated NADH regeneration were explored. The formate-decomposing pathway for hydrogen production was verified to exist in C. paraputrificum. Then NAD+-dependent formate dehydrogenase FDH1 gene (fdh1) from Candida boidinii was overexpressed, which regenerate more NADH from formate to form hydrogen by NADH-mediated pathway. With fdh1 overexpression, the hydrogen yield via NADH-involving pathway increased by at least 59?% compared with the control. Accompanied by the change of hydrogen metabolism, the whole cellular metabolism was redistributed greatly.  相似文献   

9.
Zirconium oxide is active for photoreduction of gaseous carbon dioxide to carbon monoxide with hydrogen. A stable surface species arises under the photoreduction of CO2 on zirconium oxide, and it is identified as surface formate by infrared spectroscopy. Adsorbed CO2 is converted to formate by photoreaction with hydrogen. The surface formate is a true reaction intermediate since CO is formed by the photoreaction of formate and CO2; surface formate works as a reductant of carbon dioxide to yield carbon monoxide. The dependence on the wavelength of irradiation light shows that a bulk ZrO2 is not a photoactive species. When ZrO2 adsorbs CO2 a new band appears in photoluminescence excitation spectrum. The photoactive species in the reaction that CO2+H2 yields HCOO is presumably formed by the adsorption of CO2 on ZrO2 surface. Hydrogen molecules play a role to supply an atomic hydrogen. Therefore, methane molecules can also be used as a reductant of carbon dioxide.  相似文献   

10.
Formate and carbonate complexes and bridging and linear methoxy groups were detected on the surfaces of CeO2 and 5.0% Cu/CeO2 under the reaction conditions of methanol conversion using IR spectroscopy. The reaction products were H2, methyl formate, CO, CO2, and H2O. The bridging and linear methoxy groups were the sources of formation of bi- and monodentate formate complexes, respectively. Methyl formate was formed as a result of the interaction of the linear methoxy group and the formate complex. The study demonstrated that the recombination of hydrogen atoms on copper clusters and the decomposition of methyl formate were the main reactions of hydrogen formation. Formate and carbonate complexes were the source of CO2 formation in the gas phase, and the decomposition of methyl formate was the source of CO. It was found that the addition of water vapor to the reaction flow considerably decreased the rate of CO formation at a constant yield of hydrogen. The effects of water vapor and oxygen on the course of surface reactions and the formation of products are discussed. To explain the mechanism of methanol conversion, a scheme of surface reactions is proposed.  相似文献   

11.
Brnsted acidic ionic liquids, namely 2-pyrrolidonium hydrogen sulfate, N-methyl-2-pyrrolidonium hydrogen sulfate, N-methyl-2-pyrrolidonium dihydrogen phosphate, (4-sulfobutyl)tris(4-sulfophenyl)phosphonium hydrogen sulfate, and triphenyl(propyl-3-sulfonyl)phosphonium toluenesulfonate, catalyzed efficient Pechmann condensation of phloroglucinol with β-keto ethyl/ methyl esters. 5,7-Dihydroxy-4-methylcoumarin and 5,7-dihydroxy-4-phenylcoumarin were prepared in good to excellent yields under mild, ambient, and solvent-free conditions. Pyrano[2,3-h] coumarins were then prepared by one-pot three-component reactions of 5,7-dihydroxy-4-subsituted coumarin, malononitrile, and aldehydes in the presence of catalytic amounts of Br nsted basic ionic liquids, namely 2-hydroxyethylammonium formate, 3-hydroxypropanaminium acetate, 1-butyl-3-methylimidazolium hydroxide, pyrrolidinium formate, and pyrrolidinium acetate, under thermal solvent-free conditions. The catalysts are environmentally benign and can be easily prepared, stored, and recovered without significant loss of activity.  相似文献   

12.
Redox reactions are still a challenge for biochemical engineers. A personal view for the development of this field is given. Cofactor regeneration was an obstacle for quite some time. The first technical breakthrough was achieved with the system formate/formate dehydrogenase for the regeneration of NADH2. In cases where the same enzyme could be used for chiral reduction as well as for cofactor regeneration, isopropanol as a hydrogen source proved to be beneficial. The coproduct (acetone) can be removed by pervaporation. Whole-cell reductions (often yeast reductions) can also be used. By proper biochemical reaction engineering, it is possible to apply these systems in a continuous way. By cloning a formate dehydrogenase and an oxidoreductase "designer bug" can be obtained where formate is used instead of glucose as the hydrogen source. Complex sequences of redox reactions can be established by pathway engineering with a focus on gene overexpression or with a focus on establishing non-natural pathways. The success of pathway engineering can be controlled by measuring cytosolic metabolite concentrations. The optimal exploitation of such systems calls for the integrated cooperation of classical and molecular biochemical engineering.  相似文献   

13.
1,6-六亚甲基二异氰酸酯自聚产物的结构表征   总被引:2,自引:0,他引:2  
用IR与NMR表征了用醋酸钾为催化剂时 1,6 六亚甲基二异氰酸酯 (HDI)自聚产物的结构 .结果表明 ,自聚主产物是三聚体异氰脲酸酯 ,主要含有三聚体异氰脲基、异氰酸根 ,同时含有由杂质带来的微量氨基甲酸酯、脲基甲酸酯基、取代脲基、缩二脲基 .一维核磁谱及二维化学位移相关谱分辨出 7种羰基 ,一种NCO基 ,确定了氮上 8种不同取代结构的分子链连接情况 .通过建立理论模型 ,定量地描述了自聚产物的结构 .  相似文献   

14.
The effects of molecular hydrogen on the palladium-catalyzed alkene-alcohol-carbon monoxide and alkene-formate reactions have been studied. Yields of esters were generally increased, especially in the alkene-formate reaction, in which an improvement up to 46% yield has been observed. A possible explanation is proposed in which the molecular hydrogen promotes the oxidative addition of formate to palladium. Decarbonylation of formate ester is unlikely to be the initial step.  相似文献   

15.
Metabolic flux analysis of clostridium thermosuccinogenes   总被引:2,自引:0,他引:2  
Clostridium thermosuccinogenes are anaerobic thermophilic bacteria that ferment various carbohydrates to succinate and acetate as major products and formate, lactate, and ethanol as minor products. Metabolic carbon flux analysis was used to evaluate the effect of pH and redox potential on the batch fermentation of C. thermosuccinogenes. In a first study, the effects of four pH values (6.50, 6.75, 7.00, and 7.25) on intracellular carbon flux at a constant redox potential of -275 mV were compared. The flux of carbon toward succinate and formate increased whereas the flux to lactate decreased significantly with a pH increase from 6.50 to 7.25. Both specific growth rate and specific rate of glucose consumption were unaffected by changes in pH. The fraction of carbon flux at the phosphoenolpyruvate (PEP) node flowing to oxaloacetate increased with an increase in pH. At the pyruvate node, the fraction of flux to formate increased with increasing pH. At the acetyl CoA node, the fraction of flux to acetate increased significantly with an increase in pH. A second study elucidated the effect of four controlled culture redox potentials (-225, -250, -275, and -310 mV) on metabolic carbon flux at a constant pH of 7.25. Lower values of culture redox potential were correlated with increased succinate, acetate, and formate fluxes and decreased ethanol and hydrogen fluxes in C. thermosuccinogenes. Lactate formation was not significantly influenced by redox potential. At the PEP node, the fraction of carbon to oxaloacetate increased with a decrease in redox potential. At the pyruvate node, the fraction of carbon to formate increased, while at the acetyl CoA node, the fraction of carbon flux to acetate increased with reduced redox potential. The presence of hydrogen in the headspace or the addition of nicotinic acid to the growth media resulted in increased hydrogen and ethanol fluxes and decreased succinate, acetate, formate, and lactate fluxes.  相似文献   

16.
The formation of 3-chloro-2-fluoroacrylates 2 and 2-fluoroacrylates 3 by hydrogenolysis of 3,3-dichloro-2-fluoroacrylates 1 was studied by using Bu3SnH, zinc, the sodium sulphite/sodium formate mixture or iron pentacarbonyl in the presence of a hydrogen donor (Et3SiH or CH3OH). The two last couples can be used to prepare the 3-chloro derivatives 2, whereas for the preparation of the 3,3-dihydro derivatives 3, zinc is the most appropriate reducing agent. Keywords: 2-Fluoroacrylate; 3-Chloro-2-fluoroacrylate; 3,3-Dichloro-2-fluoroacrylate; Tributyltin hydride; Zinc; Sodium sulphite; Sodium formate; Iron pentacarbonyl; NMR spectroscopy; IR spectroscopy  相似文献   

17.
The structure of cobalt formate dihydrate, Co(HCO2)2 · 2H2O, was determined using single-crystal X-ray diffraction data. The crystals are monoclinic, space groupP21/c, with unit-cell dimensionsa=8.680(2),b=7.160(2),c=9.272(2) Å,=97.43(2)°,V=571.4(3) Å3 Z=4.R obs=0.038 for 1282 unique reflections withI>3(I). The crystal structure is found to be isomorphous with those of other divalent metal formates. This structure is interesting crystallographically because the Patterson map is homometric with respect to the positions of the heavy atoms. The asymmetric unit consists of two independent cobalt atoms on special positions, two formate ions (HCOO), and two water molecules. The two cobalt atoms are each coordinated to six oxygen atoms in an octahedral arrangement. One of the cobalt octahedra contains only oxygen atoms from six formate ions. The second cobalt ion is surrounded by four water molecules and an oxygen atom from each of two formate ions. The two different octahedra are bridged by one of the formate ions and by hydrogen bonds. This network extends in a three-dimensional polymeric manner throughout the crystal structure. Each of the four oxygen atoms in the two independent formate ions forms a hydrogen bond to water and is coordinated to a metal ion. It is found that the metal ions lie in the plane of the formate carboxyl group to which they are coordinated, while molecules to which the formate ion is hydrogen bonded lie more out of this plane.  相似文献   

18.
The conformational potential energy surfaces for mono- and difluoromethyl formate have been determined by using a modified G2(MP2) level of calculations. The structures and vibrational frequencies for the conformers of mono- and difluoromethyl formate have been reported. The hydrogen abstraction reaction channels between these two formates and OH radicals have been studied at the same level of theory. Using the standard transition state theory and taking into account the effect of tunneling across the reaction barrier, we have estimated the rate constant for hydrogen abstraction by OH radical. The effect of successive fluorine substitution for methyl hydrogen on the conformational stability and on the hydrogen abstraction rate has been analyzed.  相似文献   

19.
《Tetrahedron letters》1988,29(31):3741-3744
Various aromatic aldehydes and ketones were reduced to the corresponding hydrocarbons using ammonium formate as the hydrogen source.  相似文献   

20.
1-Butyl-3-methylimidazolium hydrogen sulfate [bmim]HSO4 as an acidic ionic liquid was prepared and used as a catalyst for the formylation of alcohols with ethyl formate at room temperature with good to excellent yields. A good selectivity was observed for the formylation of primary alcohols in the presence of tertiary alcohols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号