共查询到16条相似文献,搜索用时 109 毫秒
1.
2.
硫酸/草酸混酸电解液中阳极氧化法制备多孔阳极氧化铝模板 总被引:4,自引:0,他引:4
Well ordered porous anodic alumina (PAA) film was prepared on pure Al substrate using sulfuric/oxalic acid mixture as electrolyte with different ratios, the best regular PAA film with an average diameter of 45 nm was obtained using 1∶1 sulfuric/oxalic (molar concentration) mixed acid at 26 V. Addition of oxalic acid into sulfuric acid electrolyte resulted in the increase of anodizing current density, indicating a faster formation rate of PAA film. In 1∶1 sulfuric/oxalic acid electrolyte, the current density was the biggest, which illustrated that the formed barrier layer was the thinnest. Besides, addition of oxalic acid increased the stress of oxide film, accordingly changed the self-organized process of PAA film. XPS results indicate that the PAA film is mainly composed of amorphous alumina independent of oxalic acid addition. 相似文献
3.
4.
多孔阳极氧化铝(PAA)模板具有六角有序排列的柱形孔,且孔径均匀可调,加之其良好的机械和热稳定性,在纳米材料领域得到了广泛研究和应用。近年来,人们通过改变铝阳极氧化条件制备出了多种特殊型纳米PAA模板,并利用这些模板结合物理或化学方法成功地合成了多种新型纳米功能材料。本文在简要介绍常规纳米PAA模板制备的基础上,较全面地综述了诸如孔道呈分叉形、锯齿形、骨形、倒圆锥形,孔洞呈菱形、三角形、正方形,孔道或孔壁结构呈周期性变化等特殊型纳米PAA模板的制备,揭示了电场强度和电解液种类、温度在PAA孔洞形貌尺寸调控方面的重要性,并展望了这类模板的发展方向及应用前景。 相似文献
5.
6.
二次阳极氧化方法制备有序多孔氧化铝膜 总被引:1,自引:0,他引:1
通过二次阳极氧化方法制备多孔氧化铝膜与一次阳极氧化方法制备多孔氧化铝膜孔排布规律性的对比,结果发现,二次阳极氧化方法制取的多孔氧化铝膜孔排布规律性明显好于一次阳极氧化法制取的多孔膜.在几个微米范围内,孔呈理想的六角排布.去除一次阳极氧化膜后,二次阳极氧化得以在更良好的表面进行,制取的氧化铝膜孔规律性和有序度更高.有序区域的尺寸与晶粒内的亚晶大小有一定关系. 相似文献
7.
阳极氧化铝模板上热扩散法制备MoOx纳米阵列 总被引:7,自引:0,他引:7
采用简单的热扩散法, MoO3可在模板纳米孔道内有序生长, 经还原后获得MoO2和金属Mo纳米管/线阵列. 运用XRD、SEM、TEM、HRTEM等技术对产物进行了表征. 结果表明: 在70 nm孔径的阳极氧化铝模板上, H2/N2气氛下600 ℃时的还原产物为单晶MoO2; 而在50 nm的模板上, 同样条件的还原产物为MoO2微晶聚合体. 乙醇的加入能够大大改善产物的形貌. H2气氛, 650 ℃以上温度下进一步还原得到了金属Mo纳米管阵列. 相似文献
8.
9.
贫水电解质体系制备多孔阳极氧化铝模板的研究 总被引:3,自引:0,他引:3
在有机溶剂为主的含草酸电解质中,研究了大孔径有序度高的阳极氧化铝(AAO)的一步法电化学制备.实验证实,电解质中水含量的降低能够有效抑制铝的电氧化速率和溶解速率,使得其氧化膜孔道的生长能够稳定进行,所得到的六方孔道排列有序度明显高于纯水溶剂制备的电解质体系下的产物.考察了水含量、有机溶剂种类以及电解质浓度对AAO模板孔道形貌的影响.结果表明,有机溶剂贫水电解质体系使得电氧化电压的选取范围比水溶液电解质体系更宽,孔径连续可调,反应条件温和.该方法适合于制备均匀大孔径的AAO模板. 相似文献
10.
报道一种恒电流二次氧化制备大长径比(>1000)阳极氧化铝(AAO)模板的方法,研究氧化时间和氧化电流密度分别对制备的AAO模板的表面形貌、孔径大小、厚度等的影响.结果表明,AAO模板的表面形貌及厚度n受m氧、厚化度电约流为密2度00及μ氧m、化长时径间比的为影10响0;-当13氧00化的电高流质密量度A为AO8模m板A·.c采m用-2电时化,氧学化沉1积8方h能法在制制备备出的孔A径A为O模15板0-的20孔0中成功制备了Ni纳米线阵列,分别用扫描电镜(SEM)、高分辨透射电镜(HRTEM)、X射线衍射(XRD)和X射线能量散射光谱(EDS)对其进行了表征;结果显示,制备的Ni纳米线排列整齐有序,每根Ni纳米线直径几乎相同,约150nm,长度约为180-200μm,长径比为1200-1300,与AAO模板的参数一致.研究了Ni纳米线阵列的长径比对其磁性能的影响,发现大长径比的Ni纳米线阵列具有明显的磁各向异性,而长径比约为200的Ni纳米线阵列未表现出明显的磁各向异性.本文结果表明,恒电流二次氧化方法能制备大长径比的AAO模板,并能用于制备大长径比的一维纳米材料阵列,可望在制备具有特殊光学、磁学等性能材料方面得到应用. 相似文献
11.
本文通过在0℃、0.5mol·L-1的草酸溶液中阳极氧化高纯铝片的方法制得了阳极氧化铝(AAO)膜,并用扫描电子显微镜(SEM)和原子力显微镜(AFM)对AAO膜的形貌和结构进行了表征。结果表明,阻挡层AAO膜中大小一致的膜胞在铝/氧化铝界面上排成六方形阵列;有孔层AAO膜中含有高度有序的纳米孔阵列和膜胞阵列,并且孔的直径和膜胞的尺寸都具有较窄的分布。另外,考察了阳极氧化电压对膜胞尺寸、孔径大小、孔密度和膜胞密度的影响,表明在一定的电压范围内,膜胞和孔径都随电压的升高而增大,而孔密度和膜胞密度却随电压的升高而减小。 相似文献
12.
13.
Well-aligned open-ended multi-walled carbon nanotube (MWCNT) arrays were prepared via chemical vapor deposition (CVD) method in porous anodic aluminum oxide (AAO) templates without depositing any transition metals as catalyst. Effects of the CVD temperature and heat treatment were studied in detail.Well-aligned open-ended MWCNT arrays were obtained at the CVD temperature above 600 ℃; when CVD temperature is reduced to around 550 ℃, CNTs, CNFs and other structures existed at the same time; no CNTs or carbon nanofibres (CNFs) could be found as the CVD temperature is below 500 ℃, and only amorphous carbon in the porous AAO template was found. Experimental results showed that the AAO template is catalytic during the CVD process, and it has the following two effects: to catalyze thermal decomposition of acetylene and to catalyze conversion of carbon decomposed from acetylene into CNTs or CNFs. Heat treatment could improve the graphitization degree, but it might also introduce new defects. 相似文献
14.
用AFM研究阳极氧化铝的不稳定生长 总被引:9,自引:0,他引:9
用原子力显微镜(AFM)研究了多孔阳极氧化铝(AAO)模板的不稳定生长. 结果表明:AAO模板的不稳定生长导致了纳米孔道结构有序度的降低.在H3PO4溶液中生长的AAO模板孔道结构稳定性较差;而在H2C2O4溶液中生长的AAO模板稳定性依赖于氧化电压和电流密度,在低电压和电流密度下稳定性较好,高电压和电流密度下稳定性较差. 充分利用这种不稳定生长特性,通过控制AAO模板的阳极氧化条件,可得到具有分枝孔道结构的特殊模板,这为利用模板法制备各种Y形或T形纳米线、管提供了新的发展空间. 相似文献
15.
Polyelectrolyte nanotubes of poly(sodium 4‐styrene‐sulfonate) (PSS) with cationic poly(diallyl dimethyl ammonium chloride) (PDDA) (PSS/PDDA) were fabricated by a pressure‐filter‐template technique using microporous anodic aluminum oxide (AAO) as the template. UV‐Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD) and infrared spectroscopy (FT‐IR) were applied to characterize the obtained PSS/PDDA nanotubes. The results have shown that the PSS/PDDA nanotubes exhibit an amorphous structure and have the outer diameter of 200 nm and length of 25 µm respectively, which are in good agreement with the dimensions of the AAO template pores. The wall thickness of the nanotubes may be controlled by the number of the self‐assembled layers. Formation of the nanotubes follows a layer‐by‐layer (LbL) mechanism due to the electrostatic interactions, where the SO?3 groups of PSS are first adsorbed on the Lewis acid sites of AAO template pores. 相似文献
16.
Hao‐Wen Ko Mu‐Huan Chi Chun‐Wei Chang Chun‐Hsien Su Tzu‐Hui Wei Chia‐Chan Tsai Chi‐How Peng Jiun‐Tai Chen 《Macromolecular rapid communications》2015,36(5):439-446
Multi‐component polymer nanomaterials have attracted great attention because of their applications in areas such as biomedicine, tissue engineering, and organic solar cells. The precise control over the morphologies of multi‐component polymer nanomaterials, however, is still a great challenge. In this work, the fabrication of poly(methyl methacrylate)(PMMA)/polystyrene (PS) nanostructures that contain PMMA shells and encapsulated PS nanospheres is studied. The nanostructures are prepared using a triple solution wetting method with anodic aluminum oxide (AAO) templates. The nanopores of the templates are wetted sequentially by PS solutions in dimethylformamide (DMF), PMMA solutions in acetic acid, and water. The compositions and morphologies of the nanostructures are controlled by the interactions between the polymers, solvents, and AAO walls. This work not only presents a feasible method to prepare multi‐component polymer nanomaterials, but also leads to a better understanding of polymer‐solvent interactions in confined geometries.