首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
M(bpy)2+3(M=Fe,Ru,Os)电子结构与相关性质   总被引:1,自引:0,他引:1  
报导了对配合物M(bpy)^2+3(M=Fe,Ru,Os)的量子化学密度泛函法研究的结果。B3LYP/LanL2DZ方法与基组的水平上进行计算,探讨M(bpy)^2+3电子结构特征及相关性质,特别是中心原子对配合物的配位键长、光谱性质,电荷布局及化学稳定性等的影响规律,为该类配合物的合成,为分析光、电、催化作用机理提供理论参考。  相似文献   

2.
报导了对配合物(M=Fe,Ru,Os)的量子化学密度泛函(DFT)法研究的结果.在B3LYP/LanL2DZ方法与基组的水平上进行计算,探讨的电子结构特征及相关性质,特别是中心原子对配合物的配位键长、光谱性质、电荷布居及化学稳定性等的影响规律,为该类配合物的合成,为分析光、电、催化作用机理提供理论参考.  相似文献   

3.
报导了对配合物M(bpy)2 M=Fe,Ru,Os)的量子化学密度泛函(DFT)法研究的结果.在B3LYP/LanL2DZ方法与基组的水平上进行计算 ,探讨M(bpy)32 的电子结构特征及相关性质 ,特别是中心原子对配合物的配位键长、光谱性质、电荷布居及化学稳定性等的影响规律 ,为该类配合物的合成 ,为分析光、电、催化作用机理提供理论参考.  相似文献   

4.
Ion-exchange reactions M2+ Fe3+ and Fe3+ M2+ (M = Mn, Co, Ni, Cu, Zn, Cd) were studied in metal(II) hexacyanoferrate(II) gelatin-immobilized matrices M2[Fe(CN)6] in contact with aqueous FeCl3 solutions and Fe4[Fe(CN)6]3 in contact with aqueous MCl2 solutions. It was shown that in both cases, M2+ was replaced by Fe3+ and Fe3+ was replaced by M2+ to some extent, but no complete replacement was observed in the M2[Fe(CN)6]–FeCl3 or Fe4[Fe(CN)6]3–MCl2 systems under study. No electrophilic substitution Fe3+ Mn2+ was found to occur in any noticeable degree during the contact of Fe4[Fe(CN)6]3 with aqueous MnCl2 solutions even when this contact occurred for 1 h and longer.  相似文献   

5.
田真宁  许旋 《物理化学学报》2008,24(8):1482-1486
对PPh2py配合物[M(CO)3(PPh2py)2](M=Fe, Ru)的三种构型的异构体1-6进行了研究. 其中PPh2py以两个P原子与M配位形成HH构型1(Fe)和4(Ru), 以一个P和一个N原子与M配位形成HT构型2(Fe)和5(Ru), 以两个N原子与M配位形成HH’构型3(Fe)和6(Ru). 结果表明, (1) PPh2py中P原子对HOMO轨道的贡献最大, PPh2py作为电子给体时易以P原子与金属原子结合. (2)从分子能量和相互作用能数据表明, 配合物中HH构型最稳定, HH'构型最不稳定, 这与合成产物为HH构型的结果一致. (3) 键长和Wiberg键级均表明P—M键比N—M键结合力强. P、M原子间存在σ键, 而N、Fe原子间仅存在nN→n*M或nN→σ*M-P的电荷转移作用. (4) HH构型中M对HOMO的贡献最大, PPh2py向M的电荷转移最强, 使M的负电荷最大, 故HH构型最易作为电子给体以M原子与第二个金属配位形成双核配合物.  相似文献   

6.
The preparation and comprehensive characterization of a series of homoleptic sandwich complexes containing diphosphacyclobutadiene ligands are reported. Compounds [K([18]crown-6)(thf)(2)][Fe(η(4)-P(2)C(2)tBu(2))(2)] (K1), [K([18]crown-6)(thf)(2)][Co(η(4)-P(2)C(2)tBu(2))(2)] (K2), and [K([18]crown-6)(thf)(2)][Co(η(4)-P(2)C(2)Ad(2))(2)] (K3, Ad = adamantyl) were obtained from reactions of [K([18]crown-6)(thf)(2)][M(η(4)-C(14)H(10))(2)] (M = Fe, Co) with tBuC[triple bond]P (1, 2), or with AdC[triple bond]P (3). Neutral sandwiches [M(η(4)-P(2)C(2)tBu(2))(2)] (4: M = Fe 5: M = Co) were obtained by oxidizing 1 and 2 with [Cp(2)Fe]PF(6). Cyclic voltammetry and spectro-electrochemistry indicate that the two [M(η(4)-P(2)C(2)tBu(2))(2)](-)/[M(η(4)-P(2)C(2)tBu(2))(2)] moieties can be reversibly interconverted by one electron oxidation and reduction, respectively. Complexes 1-5 were characterized by multinuclear NMR, EPR (1 and 5), UV/Vis, and M?ssbauer spectroscopies (1 and 4), mass spectrometry (4 and 5), and microanalysis (1-3). The molecular structures of 1-5 were determined by using X-ray crystallography. Essentially D(2d)-symmetric structures were found for all five complexes, which show the two 1,3-diphosphacyclobutadiene rings in a staggered orientation. Density functional theory calculations revealed the importance of covalent metal-ligand π bonding in 1-5. Possible oxidation state assignments for the metal ions are discussed.  相似文献   

7.
Single-atom M−N2 (M=Fe, Co, Ni) catalysts exhibit high activity for CO2 reduction reaction (CO2RR). However, the CO2RR mechanism and the origin of activity at the single-atom sites remain unclear, which hinders the development of single-atom M−N2 catalysts. Here, using density functional theory calculations, we reveal intermediates-induced CO2RR activity at the single-atom M−N2 sites. At the M−N2 sites, the asymmetric *O*CO configuration tends to split into *CO and *OH intermediates. Intermediates become part of the active moiety to form M−(CO)N2 or M-(OH)N2 sites, which optimizes the adsorption of intermediates on the M sites. The maximum free energy differences along the optimal CO2RR pathway are 0.30, 0.54, and 0.28 eV for Fe−(OH)N2, Co−(CO)N2, and Ni−(OH)N2 sites respectively, which is lower than those of Fe−N2 (1.03 eV), Co−N2 (1.24 eV) and Ni−N2 (0.73 eV) sites. The intermediate modification can shift the d-band center of the spin-up (minority) state downward by regulating the charge distribution at the M sites, leading to less charge being accepted by the intermediates from the M sites. This work provides new insights into the understanding of the activity of single-atom M−N2 sites.  相似文献   

8.
LaNi4M(Ni,Cu,Fe)-H2体系的量热研究   总被引:1,自引:0,他引:1  
本文用量热法测定了氢在LaNi5,LaNi4Cu,LaNi4Fe中溶解的相对偏摩尔焓△HHα→β和偏摩尔自由能△GHα→β,并计算了偏摩尔熵△SHα→β。用X光衍射分析计算了LaNi5,LaNi4Cu,LaNi4Fe的晶胞体积V,发现了△HHα→β和△GHα→β)与V存在线性关系。  相似文献   

9.
Synthetic, structural, thermogravimetric, M?ssbauer spectroscopic, and magnetic studies were performed on two new isotypic germanophosphates, M(II)(4)(H(2)O)(4)[Ge(OH)(2)(HPO(4))(2)(PO(4))(2)] (M(II) = Fe, Co), which have been prepared under hydro-/solvo-thermal conditions. Their crystal structures, determined from single crystal data, are built from zigzag chains of M(II)O(6)-octahedra sharing either trans or skew edges interconnected by [GeP(4)O(14)(OH)(4)](8-) germanophosphate pentamers to form three-dimensional neutral framework structure. The edge-sharing M(II)O(6)-octahedral chains lead to interesting magnetic properties. These two germanophosphates exhibit a paramagnetic to antiferromagnetic transition at low temperatures. Additionally, two antiferromagnetic ordering transitions at around 8 and 6 K were observed for cobalt compound while only one at 19 K for the iron compound. Low-dimensional magnetic correlations within the octahedral chains are also observed. The divalent state of Fe in the iron compound determined from the M?ssbauer study and the isothermal magnetization as well as thermal analyses are discussed.  相似文献   

10.
Reactions of electrophilic substitution Mn(II) M(II) (M = Co, Ni, Cu, Zn, Cd) are studied in gelatin-immobilized Mn(II) hexacyanoferrate(II) systems brought in contact with aqueous solutions of metal chlorides MCl2. As the result of this contact, Mn(II) is replaced by Co(II), Ni(II), Cu(II), Zn(II), or Cd(II) to give heteronuclear metal hexacyanoferrates(II) (MHCF) of Mn(II) and two-charged ions. Neither of the systems under study showed a complete substitution of Mn(II) or the formation of the respective mononuclear hexacyanoferrate(II) M2[Fe(CN)6]. When any of the above gelatin-immobilized MHCF was brought in contact with an aqueous solution of MnCl2, no electrophilic substitution M(II) Mn(II) was observed even for a long contact time.  相似文献   

11.
Dinuclear non-heme iron clusters containing oxo, hydroxo, or carboxylato bridges are found in a number of enzymes involved in O(2) metabolism such as methane monooxygenase, ribonucleotide reductase, and fatty acid desaturases. Efforts to model structural and/or functional features of the protein-bound clusters have prompted the preparation and study of complexes that contain Fe(micro-O(H))(2)Fe cores. Here we report the structures and spectroscopic properties of a family of diiron complexes with the same tetradentate N4 ligand in one ligand topology, namely [(alpha-BPMCN)(2)Fe(II)(2)(micro-OH)(2)](CF(3)SO(3))(2) (1), [(alpha-BPMCN)(2)Fe(II)Fe(III)(micro-OH)(2)](CF(3)SO(3))(3) (2), and [(alpha-BPMCN)(2)Fe(III)(2)(micro-O)(micro-OH)](CF(3)SO(3))(3) (3) (BPMCN = N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane). Stepwise one-electron oxidations of 1 to 2 and then to 3 demonstrate the versatility of the Fe(micro-O(H))(2)Fe diamond core to support a number of oxidation states with little structural rearrangement. Insight into the electronic structure of 1, 2', and 3 has been obtained from a detailed M?ssbauer investigation (2' differs from 2 in having a different complement of counterions). Mixed-valence complex 2' is ferromagnetically coupled, with J = -15 +/- 5 cm(-)(1) (H = JS(1).S(2)). For the S = (9)/(2) ground multiplet we have determined the zero-field splitting parameter, D(9/2) = -1.5 +/- 0.1 cm(-)(1), and the hyperfine parameters of the ferric and ferrous sites. For T < 12 K, the S = (9)/(2) multiplet has uncommon relaxation behavior. Thus, M(S) = -(9)/(2) <--> M(S) = +(9)/(2) ground state transition is slow while deltaM(S) = +/-1 transitions between equally signed M(S) levels are fast on the time scale of M?ssbauer spectroscopy. Below 100 K, complex 2' is trapped in the Fe(1)(III)Fe(2)(II) ground state; above this temperature, it exhibits thermally assisted electron hopping into the state Fe(1)(II)Fe(2)(III). The temperature dependence of the isomer shifts was corrected for second-order Doppler shift, obtained from the study of diferrous 1. The resultant true shifts were analyzed in a two-state hopping model. The diferric complex 3 is antiferromagnetically coupled with J = 90 +/- 15 cm(-)(1), estimated from a variable-temperature M?ssbauer analysis.  相似文献   

12.
Electrophilic substitutions Co(II) M(II) (M = Mn, Ni, Cu, Zn, Cd) in cobalt(II) hexacyanoferrate(II) gelatin-immobilized matrices in contact with aqueous solutions of corresponding chlorides MCl2 were studied. As a result of this contact, Co(II) was shown to be replaced to some extent by Ni(II), Cu(II), Zn(II), or Cd(II) and to give heteronuclear cobalt(II) hexacyanoferrates(II) and two-charge ions. A complete substitution of Co(II) or the formation the respective mononuclear hexacyanoferrate(II) M2[Fe(CN)2] was observed in neither of the studied systems Co(II) M(II). No Co(II) Mn(II) substitution was observed, even though the immobilized matrix was in contact with a solution for a long time.  相似文献   

13.
14.
在自制的仪器上以冲激光溅射铁、钌、锇的三核羰基原子簇化合物。由原位质谱观察和分析溅射产生的正负离子。比较了解离碎片及分布发现羰基锇原子簇化合物具有特殊的结构稳定性。它们不仅具有很强的金属键,而且锇与羰基分子还形成了很强的配位键。  相似文献   

15.
With the use of Kl?ui's tripodal ligand, [(Cp)Co(P(O)(OEt)(2))(3)](-) (L(CoEt), Cp = cyclopentadiene) as the auxiliary ligand to react with different metal salts and tricyanometalate building blocks, five neutral trimetallic hexanuclear complexes: [(Tp)(2)Fe(2)(CN)(6)Cu(2)(L(CoEt))(2)]·6H(2)O (1, Tp = hydridotris(pyrazolyl)borate), [(Tp*)(2)Fe(2)(CN)(6)Cu(2)(L(CoEt))(2)]·2H(2)O (2, Tp* = hydridotris(3,5-dimethyl-pyrazolyl)borate), [(pzTp)(2)Fe(2)(CN)(6)Cu(2)(L(CoEt))(2)]·H(2)O·3MeOH (3, pzTp = tetra(pyrazolyl)borate), [(Tp)(2)Fe(2)(CN)(6)Ni(2)(L(CoEt))(2)(MeCN)(2)]·2MeCN·2H(2)O (4) and [(Tp)(2)Fe(2)(CN)(6)Mn(2)(L(CoEt))(2)(MeCN)(2)]·2MeCN (5), have been obtained and structurally characterized. Magnetic measurements confirm that there are ferromagnetic couplings between the cyano-bridged Fe and Cu/or Ni ions and antiferromagnetic interaction between the cyano-bridged Fe and Mn ions. Slow relaxation of the magnetization is observed in complexes 1 and 4, while complex 3 exhibits metamagnetic behavior with a critical field of 17.5 kOe.  相似文献   

16.
The structure of the fully ordered α-Na(3)Ti(2)(PO(4))(3) NASICON compound was elucidated using high-quality single-crystal data. The cation/vacancy distribution forms a homogeneous 3D arrangement and could represent the absolute cationic ordering available in the full Na(3)M(2)(PO(4))(3) series, as verified for M = Fe. For M = Ti, the reversible α → γ transition was observed at 85 °C, leading to the standard disordered R ?3c γ model. Through JPDF analysis, the most probable Na(+) zigzag M(2)-M(1) diffusion scheme was directly deduced using our accurate crystallographic data.  相似文献   

17.
Three trinuclear sandwich-type cyanide-bridged MIII–NiII complexes, {[Ni(cyclm)[Fe(bpb)(CN)2]2}·8H2O (1), {[Ni(cyclm)[Cr(bpb)(CN)2]2}·2H2O (2), and {[Ni(cyclm)[Co(bpb)(CN)2]2}·CH3OH·2H2O (3) (cyclm?=?1,4,8,11-tetraazacyclotetradecane), have been synthesized using K[M(bpb)(CN)2] (M?=?Fe, Cr, Co; bpb?=?1,2-bis(pyridine-2-carboxamido)benzenate) as building block and one Ni(II) compound containing a 14-membered macrocycle ring as assembling segment. All the complexes have been characterized by elemental analysis, IR spectroscopy, and X-ray structure determination. Single X-ray diffraction analysis shows similar sandwich-like structures, in which the two cyanide-containing building blocks are monodentate through one of their two cyanides, coordinated face to face to the central Ni(II). Investigation of the magnetic properties of 1 and 2 reveals ferromagnetic magnetic coupling between the neighboring Fe(III)/Cr(III) and Ni(II) through the bridging cyanide. A best-fit to the magnetic susceptibilities of 1 and 2 based on the trinuclear M2Ni model leads to magnetic coupling constants J?=?5.47(1)?cm?1 for 1 and J?=?6.37(2)?cm?1 for 2.  相似文献   

18.
19.
The compound Ba4Fe2I5S4 has been prepared at 1223-1123 K by the "U-assisted" reaction of FeS, BaS, S, and U with BaI2 as a flux. A more rational synthesis was also found; however, the presence of U appears to be essential for the formation of single crystals suitable for X-ray diffraction studies. Ba4Fe2I5S4 crystallizes in a new structure type with two formula units in space group I4/m of the tetragonal system. The structure consists of a Ba-I network penetrated by (1)infinity[Fe2S4] chains. Each Fe atom, which is located on a site with 4 symmetry, is tetrahedrally coordinated to four S atoms. The FeS4 tetrahedra edge-share to form linear (1)infinity[Fe2S4] chains in the [001] direction. The Fe-Fe interatomic distance in these chains is 2.5630(4) A, only about 3% longer than the shortest Fe-Fe distance in -Fe metal. Charge balance dictates that the average formal oxidation state of Fe in these chains is +2.5. The M?ssbauer spectra obtained at 85 and 270 K comprise a single quadrupole doublet that has hyperfine parameters consistent with an average Fe oxidation state of +2.5. The M?ssbauer spectrum obtained at 4.2 K consists of a single magnetic sextet with a small hyperfine field of -15.5 T. This spectrum is also consistent with rapid electron delocalization and an average Fe oxidation state of +2.5. The molar magnetic susceptibility of Ba4Fe2I5S4, obtained between 3.4 and 300 K, qualitatively indicates the presence of weak pseudo-one-dimensional ferromagnetic exchange within a linear chain above 100 K and weak three-dimensional ordering between the chains at lower temperatures.  相似文献   

20.
A comparison of the electrochemical properties of a series of dinuclear complexes [M(2)(L)(RCO(2))(2)](+) with M = Mn or Co, L = 2,6-bis(N,N-bis-(2-pyridylmethyl)-sulfonamido)-4-methylphenolato (bpsmp(-)) or 2,6-bis(N,N-bis(2-pyridylmethyl)aminomethyl)-4-tert-butylphenolato (bpbp(-)) and R = H, CH(3), CF(3) or 3,4-dimethoxybenzoate demonstrates: (i) The electron-withdrawing sulfonyl groups in the backbone of bpsmp(-) stabilize the [M(2)(bpsmp)(RCO(2))(2)](+) complexes in their M(II)(2) oxidation state compared to their [M(2)(bpbp)(RCO(2))(2)](+) analogues. Manganese complexes are stabilised by approximately 550 mV and cobalt complexes by 650 mV. (ii) The auxiliary bridging carboxylato ligands further attenuate the metal-based redox chemistry. Substitution of two acetato for two trifluoroacetato ligands shifts redox couples by 300-400 mV. Within the working potential window, reversible or quasi-reversible M(II)M(III)? M(II)(2) processes range from 0.31 to 1.41 V for the [Co(2)(L)(RCO(2))(2)](+/2+) complexes and from 0.54 to 1.41 V for the [Mn(2)(L)(RCO(2))(2)](+/2+) complexes versus Ag/AgCl for E(M(II)M(III)/M(II)(2)). The extreme limits are defined by the complexes [M(2)(bpbp)(CH(3)CO(2))(2)](+) and [M(2)(bpsmp)(CF(3)CO(2))(2)](+) for both metal ions. Thus, tuning the ligand field in these dinuclear complexes makes possible a range of around 0.9 V and 1.49 V for the one-electron E(M(II)M(III)/M(II)(2)) couple of the Mn and Co complexes, respectively. The second one-electron process, M(II)M(III)? M(III)(2) was also observed in some cases. The lowest potential recorded for the E°(M(III)(2)/M(II)M(III)) couple was 0.63 V for [Co(2)(bpbp)(CH(3)CO(2))(2)](2+) and the highest measurable potential was 2.23 V versus Ag/AgCl for [Co(2)(bpsmp)(CF(3)CO(2))(2)](2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号