首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Ghosh JP  Das HR 《Talanta》1981,28(4):274-276
A macroreticular polystyrene-based chelating ion-exchanger containing 1-nitroso-2-naphthol as the functional group has been synthesized. The exchange-capacity of the resin for a number of metal ions such as copper(II), iron(III), cobalt(II), nickel(II), palladium(II) and uranium(VI) as a function of pH has been determined. The sorption and elution characteristics for palladium(II) and uranium(VI) have been thoroughly examined with a view to utilizing the resin for separation and concentration of uranium and palladium. Uranium(VI) has been separated from a mixture of ten other metal ions by sorption on the chelating resin and selective elution with 0.5M sodium carbonate. Palladium(II) has been separated from various metal ions by selective sorption on the resin in 1M hydrochloric acid medium.  相似文献   

2.
The functional group capacity and the percentage of functional group conversion of crosslinked polystyrene resin bearing N-methyl-2-thioimidazole (MTIR) synthesized under optimum conditions are as high as 4.08 mmol/g resin and 96.0%, respectively. The apparent activation energies of sorption of MTIR for Au(III) and Pt(IV) are 13.1 and 13.4 kJ/mol, respectively. The sorption behavior of MTIR for Au(III), Pt(IV), and Pd(II) obeys the Freundlich and Langmuir isotherms. The sorption capacities of MTIR for Au(III), Pt(IV), and Pd(II) are as high as 4.33, 2.12, and 2.33 mmol/g resin, respectively. Au(III), Pt(IV), and Pd(II) adsorbed on MTIR can be eluted quantitatively by the eluant. The resin can be regenerated easily and reused without an obvious decrease in the sorption capacity for Au(III) and Pd(II). The resin has high sorption selectivity for noble metal ions. Au(III) can be separated quantitatively in the presence of high concentrations of Cu2+, Fe3+, Ni2+, and Mn2+. The recovery of platinum from the spent industrial catalysts is 98.6% by MTIR. The preconcentration and separation of palladium and platinum from the anode deposits of electrolysis of crude copper have been investigated. The resin may have potential industrial uses.  相似文献   

3.
Sugii A  Ogawa N 《Talanta》1979,26(10):970-972
A macroreticular polystyrene-based chelating resin with the nitrosoresorcinol group as the functional group has been synthesized. The resin shows selectivity for copper(II), iron(III), and cobalt(II). The sorption behaviour of cobalt(II) is examined in detail, with the intention of using the resin analytically. Iron(III) and cobalt(II) are separated in a column operation by stepwise elution with oxalic acid solution and hydrochloric acid respectively.  相似文献   

4.
Ghosh JP  Pramanick J  Das HR 《Talanta》1981,28(12):957-959
A new chelating ion-exchange resin based on a macroreticular polystyrene—divinyl benzene copolymer and containing 2-nitroso-1-naphthol as the functional species has been synthesized. It is highly stable in acidic and alkaline solutions. Its sorption characteristics for V(V), Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Hg(II), Pd(II) and U(VI) have been investigated over the pH range 1.0–7.0 and the exchange-capacities have been found to be generally higher than those of a similar resin containing 1-nitroso-2-naphthol.  相似文献   

5.
Summary A chelating polystyrene based resin containing N-benzoyl-N-phenylhydroxylamine has been sythesized by two methods and characterized. Conditions for quantitative separation of Ti(IV), Fe(III) and Al(III) on the resin have been studied. A method has been developed for the determination of these three metal ions in bauxite or clay samples after their separation on the resin with recoveries of 98.5–99.5% for different metal ions. The maximum sorption values are observed at pH 1, 2.5 and 2.5 for Ti(IV), Fe(III) and Al(III), respectively, which are recovered by successive elution with 1 mol/l H2SO4, 2 mol/l HCl and 4 mol/l H2SO4 in the above order.  相似文献   

6.
Roy PK  Rawat AS  Rai PK 《Talanta》2003,59(2):239-246
A new chelating resin was synthesised by the modification of styrene-divinylbenzene (2%) copolymer and incorporation of dithiocarbamate groups. The polydithiocarbamate resin was characterised by elemental analysis, thermal studies and IR studies. The analytical characteristics of the sorbent were established and optimum sorption conditions for Cu, Ni, Pb, Fe, As and Mn determined. The total sorption capacity of the resin was 37 mg g−1 for Ni(II), 35 mg g−1 for Cu(II), 29 mg g−1 for Fe(III) and 23 mg g−1 for Pb(II). The optimum pH for the removal of metal ions was 3-5 for Ni(II), 5 for Cu(II), 4 for Fe(III) and 4-5 for Pb(II). High sorption capacity was observed when compared with other conventional chelating polymers. The sorption kinetics was fairly rapid, as apparent from the loading half time t1/2 values, indicating a better accessibility of the chelating sites.  相似文献   

7.
The sorption mechanism of sulfur-containing chelating resin, poly[4-vinylbenzyl (2-hydroxyethyl) sulfide], towards Au(III) was investigated by Fourier transform infrared spectra (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive X-ray microanalysis (EDX), and X-ray diffraction (XRD). It was showed that the sulfide bond in the resin was oxidized into sulfoxide and sulfone bond, and Au(III) was deoxidized into Au(0).  相似文献   

8.
A new chelating ion-exchange resin with a spacer CH2-NH-C6H4- based on a microreticular chloromethylated styrene-divinylbenzene copolymer containing α-nitroso-β-naphthol as a functional group has been synthesized. The sorption characteristics for manganese(II), iron(III), cobalt(II), nickel(II), copper(II), and zinc(II) have been investigated over the pH range 1.0–7.0. The resin is highly stable in acidic and alkaline medium. Iron(III) and cobalt(II); copper(II) and iron(III) are separated very effectively in a column operation by stepwise elution.  相似文献   

9.
Mendez R  Pillai VN 《Talanta》1990,37(6):591-594
A chelating ion-exchange resin with hydroxamic acid functional groups was synthesized from styrene-maleic acid co-polymer cross-linked with divinylbenzene. A resin prepared from equimolar amounts of styrene and maleic anhydride with 0.75 mole% divinylbenzene gives the best sorption characteristics. The selectivity of the resin for metal ions is copper(II) > cobalt(II) > zinc(II) > nickel(II) > manganese(II) > chromium(III) > iron(III) > vanadium(V). Copper(II), chromium(III) and iron(III) in chromium plating baths can be separated by use of the resin and determined spectrophotometrically.  相似文献   

10.
Identification of selective ion-exchange resin for fluoride sorption   总被引:11,自引:0,他引:11  
The defluoridation capacity (DC) of a chelating resin, namely Indion FR 10 (IND), and Ceralite IRA 400 (CER), an anion-exchange resin, were compared under various equilibrating conditions for the identification of selective sorbent. The results showed that chelating resin is more selective than an anion-exchange resin for fluoride removal. The fluoride sorption was reasonably explained using Freundlich and Langmuir isotherms. The surface morphology of resins before and after fluoride sorption was observed using scanning electron microscopy (SEM). Fourier transform infrared spectroscopy (FTIR) was used for the determination of functional groups responsible for fluoride sorption. Various thermodynamic parameters such as DeltaG0, DeltaH0, DeltaS0, and Ea have been calculated to understand the nature of sorption. The sorption kinetic mechanism was studied with reaction-based and diffusion-based models. The sorption process was found to be controlled by pseudo-second-order and particle diffusion models. The performance of the resins studied has been tested with field samples collected from a fluoride-endemic area.  相似文献   

11.
A chelating sorbent obtained by immobilization of thionalide on the macroporous resin Bio Beads SM-7 was used for speciation of antimony(III) and (V) in natural waters. Antimony(III) was separated from Sb(V) by sorption on a column with the sorbent at pH 5. Antimony(V) in the effluent was reduced to Sb(III) and preconcentrated by sorption on the sorbent from 0.5M HCl solution. Both the separated species were determined directly on the sorbent by neutron activation analysis.  相似文献   

12.
A new stable chelating resin was synthesized by incorporating the bis(2-benzimidazolyl methyl)amine into Merrifield polymer through CN covalent bond and characterized by elemental analysis, IR and thermal study. The sorption capacity of the newly formed resin for Ag(I), Cu(II), Fe(III), Hg(II) and Pb(II) as a function of pH have been studied. The resin exhibits no affinity for alkali or alkaline earth metals. In column operation it has been observed that Ag(I) in trace quantities can be separated from different complex matrices and Hg(II) can be removed from the river water spiked with Hg(II) at usual pH of natural waters.  相似文献   

13.
A new chelating resin is prepared by coupling Amberlite XAD-4 with metaphenylendiamine through an azo spacer, characterized (elemental analysis, IR and thermogravimetric analysis (TGA)) and studied for preconcentration Rh (III) using Inductive Couple Plasma Atomic Emission Spectroscopy (ICP-AES) for rhodium monitoring. The optimum pH value for sorption of the metal ion was 6.5 (recovery 100%). The sorption capacity was found 0.256 mmol g− 1 of resin for Rh (III). The method has a detection limit and limit of quantification of 0.05 and 0.08 μg mL− 1 at pH 6.5, respectively. The chelating resin can be reused for 10 cycles of sorption-desorption without any significant change in sorption capacity. A recovery of 100% was obtained for the metal ion with 1.5 M HCl as eluting agent. The equilibrium adsorption data of Rh (III) on modified resin were analyzed by Langmuir and Freundlich models. Adsorption data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of adsorption. The positive value of the enthalpy change (2.48 kJ/mol) indicates that the adsorption is an endothermic process. The method was applied for rhodium ions determination from tap water sample.  相似文献   

14.
《Analytical letters》2012,45(9):1735-1747
Abstract

A new chelating resin has been synthesized by introducing a quinaldinic acid amide group into styrenedivinyl benzene (8%) copolymer beads. The resin is stable in fairly strong acids or alkali and has been characterized by elemental analysis for nitrogen and from i.r. spectra. The water regain value is 0.37g/g. The sorption patterns of Na(I), K(I), Ca(II), Mg(II), Pb(II), Cu(II), Ni(II), Zn(II), Cd(II), Hg(II) and Fe(III) on the chelating resin have been studied as a function of pH. The resin selectively sorbs Hg(II) ever a wide pH-range of 2.5–7.6 with high efficiency. The maximum exchange capacity for Hg(II) is 1.98 mmols g?1 at pH 5.5. Over 99% of Hg(II) sorbed has been recovered by using 10% thiourea in 1M HClO4 both by batch and column operations. The has been utilized in the preconcentration and recovery of Hg(II) from industrial and laboratory waste water.  相似文献   

15.
De Vito IE  Masi AN  Olsina RA 《Talanta》1999,49(4):929-935
A very stable chelating resin was prepared by adsorption of (o-[3,6-disulfo-2-hidroxy-1-naphthylazo]-benzenearsonic acid) (thorin) on a macroporous resin Amberlite XAD-7. The optimal conditions for preparing it were obtained through the study of the adsorption properties of the resin and the thermodynamic quantities of the adsorption processes. Likewise, the behavior of the loaded resin with the rare earth elements (REE) were studied (pH of retention, sorption kinetics, etc). The conditions to prepare a thin film with this system were also evaluated. The loaded resin was successfully used for the separation and preconcentration of Sm(III), Eu(III) and Gd(III) prior to their determination by X-ray fluorescence (XRF) spectrometry. The preconcentration factor obtained was 500 and the concentrations at low detection limit were 13.8, 17 and 15.7 microg l(-1) for Sm, Eu and Gd, respectively.  相似文献   

16.
1-(2-氨乙基)吡咯烷树脂的合成及其对贵金属的吸附   总被引:4,自引:0,他引:4  
研究了试剂摩尔比、反应温度、反应时间对1-(2-氨乙基)吡咯烷树脂合成的影响规律.此树脂的功能基含量2.74 mmol/g树脂,对Au(Ⅲ)、Os(Ⅳ)、Pt(Ⅳ)、Ir(Ⅳ)、Ru(Ⅲ)、Pd(Ⅱ)的吸附容量分别高达950、520、436、418、314、302 mg/g树脂.FT-IR、元素分析表征了树脂结构.测定了吸附速率曲线,配位比,表观吸附活化能△E_(Au)=6.4、△E_(Pt)=33.7kJ/mol.XPS研究了吸附机理.  相似文献   

17.
The separation of iron(III), copper(II) and uranyl(II) ions from a series of salt solutions by chelating ion exchange on Duolite CS-346 resin by pH control is described. Recoveries of these ions from cobalt and nickel salt solutions were quantitative. Iron may also be separated from copper by selective sorption with pH control, and uranium from iron and copper by selective desorption with sodium carbonate solution as eluent.  相似文献   

18.
Summary The distribution coefficients of Ag(I), Au(III), Cd(II), Cu(II), Fe(III), Hg(II), Ni(II), Pb(II), Pt(IV), and Zn(II) on a new chelating resin containing -hydroxydithiocinnamic acid at various acidity were studied. In the strongly acidic region, the resin shows high affinity for Ag(I), Hg(II), Au(III) and Pt(IV) and high resistance against air oxidation. The effect of diverse foreign ligands on the sorption of metal ions and the possibility of application to speciation studies with this resin were also considered. Some quantitative separations of Cd-Cu-Pb, Cu-Au and Au-Pt with this resin column were described. Detection of the chromatography system was carried out via post column derivatisation of the column effluent with PAR at 520 nm or direct UV detection of the chloride complexes at 215 nm.  相似文献   

19.
A new chelating resin, Xylenol Orange coated Amberlite XAD-7, was prepared and used for preconcentration of Cd(II), Co(II), Cu(II), Fe(III), Ni(II) and Zn(II) prior to their determination by flame atomic absorption spectrophotometry. The optimum pH values for quantitative sorption of Cd(II), Co(II), Cu(II), Fe(III), Ni(II) and Zn(II) are 4.5-5.0, 4.5, 4.0-5.0, 4.0, 5.0 and 5.0-7.0, respectively, and their desorptions by 2 mol L(-1) HCl are instantaneous. The sorption capacity of the resin has been found to be 2.0, 2.6, 1.6, 1.6, 2.6 and 1.8 mg g(-1) of resin for Cd, Co, Cu, Fe, Ni and Zn, respectively. The tolerance limits of electrolytes, NaCl, NaF, NaI, NaNO3, Na2SO4 and of cations, Mg2+ and Ca2+ in the sorption of the six metal ions are reported. The preconcentration factor was between 50 and 200. The t1/2 values for sorption are found to be 5.3, 2.9, 3.2, 3.3, 2.5 and 2.6 min for the six metals, respectively. The recoveries are between 96.0 and 100.0% for the different metals at preconcentration limits between 10 to 40 ng mL(-1). The preconcentration method has been applied to determine the six metal ions in river water samples after destroying the organic matter (if present in very large amount) with concentrated nitric acid (RSD < or = 8%, except for Cd for which it is upto 12.6%) and cobalt content of vitamin tablets with RSD of approximately 3.0%.  相似文献   

20.
The one-step reaction of dehydrodithizone with chloromethylated polystyrene yields the anion-exchanger P-TD. Reduction of the immobilized tetrazolium groups of P-TD produces a chelating resin, P-D, containing S-bonded dithizone as the functional group. Distribution coefficients as a function of acidity are presented for 27 metal ions, to establish the selectivity of these sorbents for noble metals. For gold and platinum group metals, the ion-exchangers show marked differences in loading capacities, rates of simultaneous sorption in static conditions and efficiencies in column tests. The P-TD anion exchanger seems to be more profitable than the P-D chelating resin for most purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号