首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analytical potentialities of a chip-based CE in determination of ammonium in wastewaters were investigated. CZE with the electric field and/or ITP sample stacking was performed on a column-coupling (CC) chip with integrated conductivity detectors. Acetate background electrolytes (pH ~3) including 18-crown-6-ether (18-crown-6) and tartaric acid were developed to reach rapid (in 7-8 min) CZE and ITP-CZE resolutions of ammonium from other cations (sodium, potassium, calcium and magnesium) present in wastewater samples. Under preferred working conditions (suppressed hydrodynamic flow (HDF) and EOF on the column-coupling chip), both the employed methods did provide very good repeatabilities of the migration (RSD of 0.2-0.8% for the migration time) and quantitative (RSD of 0.3-4.9% for the peak area) parameters in the model and wastewater samples. Using a 900-nL sample injection volume, LOD for ammonium were obtained at 20 and 40 μg/L concentrations in CZE and ITP-CZE separations, respectively. Very good agreements of the CZE and ITP-CZE determinations of ammonium in six untreated wastewater samples (only filtration and dilution) with the results obtained by a reference spectrometric method indicate a very good accuracy of both the CE methods presented.  相似文献   

2.
Startin JR  Hird SJ  Sykes MD  Taylor JC  Hill AR 《The Analyst》1999,124(7):1011-1015
We report a method which we have used routinely for the determination of chlormequat residues in pears. After extraction with methanol, determination was performed, without clean-up, by ion-exchange HPLC using an SCX column eluted with aqueous ammonium formate-methanol, and HPLC-MS with an electrospray interface. MS and MS-MS were employed concurrently, using selected ion monitoring and selected reaction monitoring, respectively, of the 35Cl and 37Cl isotopes of the chlormequat cation and the CID transitions of each of these precursors to the common product ion at m/z 58. The method was suitable for determinations at concentrations of chlormequat cation of 0.04 mg kg-1. Concentrations determined using the four signals were in good agreement (mean RSD 3%). The mean recovery of chlormequat cation at 0.16 mg kg-1, measured using the m/z 122-->58 signal, was 86% (RSD 7%) under repeatability conditions and 88% (RSD 15%) in routine application of the method over a 3 month period. Analysis of an in-house reference sample of pears, similarly analysed over the 3 month period, gave an RSD of 10% with a mean of 0.14 mg kg-1. Mean recovery at 0.016 mg kg-1, under repeatability conditions on two occasions, was 101% (RSD 6%) and 56% (RSD 12%).  相似文献   

3.
This paper presents the extraction of cations from a soil sample, type ranker on serpentinite, in deionized water, by use of three different extraction techniques. The first extraction technique included the use of a rotary mixer, the second technique involved the use of a microwave digestion system with different extraction temperatures, and the third technique employed an ultrasonic bath with different extraction times. Ion chromatography was used for determining the concentration of Li, Na, K, Ca, Mg and ammonium ions in soil extracts with subsequent determination of concentrations for all cations, except for ammonium ion extraction, conducted by Inductively Coupled Plasma-Atomic Emission Spectrometry. The results of cation extractions showed that microwave assisted extraction was most efficient for the Li, Na, K, Ca, Mg, Co, Mn, Ni, Pb and ammonium ions. Use of a rotary mixer for extraction was most efficient for Cd and Zn ions, while use of ultrasound bath was most efficient for Cr, Cu, Fe and Al ions. Several times higher amount of cations extracted by the most efficient, compared to the second best technique, under optimal conditions, were noticed in the case of: Ca, Mg, Co, Mn, Fe, Al, and Zn ions.  相似文献   

4.
Hydrophobic interaction electrokinetic chromatography was used to simultaneously determine seven active ingredients (diphenhydramine hydrochloride, dibucaine hydrochloride, chlorhexidine hydrochloride, phenylephrine hydrochloride, hydrocortisone acetate, allantoin and tocopherol acetate) in an ointment. Not only hydrophobic but also ionic compounds were successfully separated by use of a separation solution composed of acetonitrile-water (80:20, v/v), tetradecylammonium salt and ammonium chloride. The migration behavior of the hydrophobic compound depended on tetradecylammonium concentration, while that of the ionic compounds depended on ammonium chloride concentration. An addition of triethylamine to the separation solution markedly improved the reproducibility of the peak areas of cations with a relative standard deviation (RSD) of less than 1.7% (n=6). The established method was validated and confirmed to be applicable to the determination of the active ingredients in a commercial ointment. Sample preparation was performed by liquid-liquid extraction and no interference from the formulation excipients was observed. Good linearities were obtained, with correlation coefficients above 0.999. Recoveries and precisions ranged from 98.0 to 100.8%, and from 0.4 to 2.9% RSD, respectively. These results suggest that hydrophobic interaction electrokinetic chromatography can be used for the determination of ionic compounds as well as hydrophobic compounds in ointment.  相似文献   

5.
A simple, selective, and sensitive method for the simultaneous determination of anions (sulfate, nitrate, and chloride) and cations (sodium, ammonium, potassium, magnesium, and calcium) in acid rain waters was developed using ion-exclusion/ cation-exchange chromatography with conductimetric detection. A weakly acidic cation-exchange resin column (Tosho TSKgel OA-PAK-A) and a sulfosalicylic acid-methanol-water eluent was used. With a mobile phase comprising 1.25 mM sulfosalicylic acid in methanol-water (7.5:92.5) at 1.2 ml/min, simultaneous separation and detection of the above anions and cations was achieved in about 30 min. Linear calibration plots of peak area versus concentration were obtained over the concentration ranges 0-1.0 mM for anions (R=0.9991) and 0-0.5 mM for cations (R=0.9994). Detection limits calculated at S/N=3 ranged from 4.2 to 14.8 ppb for the anions and from 2.4 to 12.1 ppb for the cations. The reproducibility of retention times was 0.14-0.15% relative standard deviation (RSD) for anions and 0.18-0.31% for cations, and reproducibility of chromatographic peak areas was 1.22-1.75% RSD for anions and 1.81-2.10% for cations. The method was applied successfully to the simultaneous determination of anions and cations in aerosols transported from mainland China to central Japan, as determined by a meteorological satellite data analyzer.  相似文献   

6.
A simple method, developed primarily for simultaneous determination of total nitrogen and inorganic cations by high performance ion chromatographic (HPIC), was optimized for digestion of flue‐cured tobaccos, and compared with the traditional Kjeldahl method and atomic absorption spectrometry (AAS). Nitrogen determination by either Dumas method or Kjeldahl method is time‐consuming and tedious. Metal elements determination by either inductively coupled plasma‐mass spectrometry (ICP‐MS) or AAS may be more expensive and requires specialist equipment. The use of HPIC to simultaneous determine total nitrogen as ammonium ion and metal elements as inorganic cations after sample digestion significantly improves the speed of the analysis compared with the conventional methods. The cation‐exchange column and suppressed conductivity detector was used for determination of ammonium and inorganic cations in the presence of the elevated levels of sulfuric acid found in digested sample. The propsoed digestion method was accurate and precise, and required little investment. The determination of ammonium and inorganic cations was linear from 15 pg·L?1 up to 25 ng·L?1. The results obtained by the HPIC method were compared with those for the conventional methods approach for the determination of total nitrogen and metal elements. The application of the HPIC method is also demonstrated for a variety of other plant samples matrices.  相似文献   

7.
A low-capacity cation-exchange HPLC method for the determination of UV-absorbing organic cations such as amino acids, histidine dipeptides, and creatinine was developed. A commercially available reversed-phase column was dynamically coated with hexadecylsulfonate, and was successfully used for the cation-exchange separation with ethylenediammonium eluting ion at pH 2.5. The coated column was enough stable for the specific use with a completely aqueous mobile phase at low and constant pH; and the day-to-day reproducibility for retention time was 0.9-1.7% of RSD (relative standard deviation). The linear relation between concentrations and detector responses (area) by using a photodiode-array UV detection at 210 nm ranged from 0.2 to 1000 microM (sample size 50 microl) for 1-methylhistidine, 3-methylhistidine, histidine, creatinine, anserine, carnosine, and homocarnosine, and from 0.5 to 2000 microM for creatine, tyrosine, and phenylalanine, with less than 5% of RSD. The UV spectrum (190-300 nm) obtained during chromatography was very indicative for each analyte. Overall recoveries were 97-104%. The developed HPLC method in conjunction with preliminary fractionation technique could be applied to the analysis of urine of patient with metabolic disorder such as phenylketonuria.  相似文献   

8.
While alkali and alkaline earth cations are commonly determined by using spectrometric techniques such as atomic absorption spectrometry or inductively coupled plasma, ammonium cation in the same sample must be measured separately by a wet chemical technique such as colorimetry, titrimetry, or ammonia-selective electrode. In a single 25-min run ion chromatography can determine all of the important inorganic cations including lithium, sodium, ammonium, potassium, magnesium and calcium. In this paper, we describe the use of ion chromatography with a new high-capacity cation-exchange column (the IonPac CS16), an electrolytically-generated methanesulfonic acid eluent and suppressed conductivity detection to determine dissolved alkali and alkaline earth cations and ammonium in drinking water wastewater and aqueous soil extracts. The IonPac CS16 is a high-capacity cation-exchange column that incorporates recent advances in polymer chemistry to enable trace-level determinations of cations even in high-ionic-strength matrices. We discuss the linear range, method detection limits, and analyte recoveries obtained with this column, and evaluate the effect of potential interferences on method performance during the analysis of typical environmental samples.  相似文献   

9.
An investigation into the use of zwitterionic ion chromatography for the determination of inorganic anions in water samples was carried out. When using an ODS stationary phase precoated with Zwittergent 3-14 and a pure water mobile phase, the stability of the adsorbed coating was insufficient for quantitative work. Recycling of the water mobile phase was used to stabilise the zwitterionic coating, and resulted in improved retention time precision (15.2% RSD down to 2.4% RSD for nitrate). Post-detection cation- and anion-exchange columns in acid and hydroxide form removed sample ions from the recycling mobile phase, with the desorbed Zwittergent 3-14 passing through unretained and passing back through the pump to the analytical column. A 200-ml volume of mobile phase was recycled over a 3-week period with retention times for sulphate, chloride and nitrate standards injected at the start and end of the period varying less than 2.5%. The same system was then used with a mobile phase containing 2 mM Zwittergent 3-14. This resulted in further improvements in retention time (0.2-0.5% RSD, n = 10) and peak area precision (2.6-6.0% RSD, 1 mM standards) and improved peak efficiencies (2421-4047 N). The developed method was applied to water samples, and results compared to those obtained using anion-exchange chromatography. All sample cations were exchanged to sodium using an off-line cation-exchange procedure prior to injection.  相似文献   

10.
Corvillo MA  Gomez MG  Rica CC 《Talanta》1990,37(7):719-724
Three procedures are proposed for the determination of trace levels of fluoride in sea-water, based on the formation of aluminium monofluoride in an electrothermal graphite furnace, followed by measurement of its molecular absorption at 227.45 nm. They involve the use of dilution, a matrix modifier, or a matrix modifier and an ion-exchange resin, and are all acceptably sensitive and specific for fluoride. Interferences from cations and anions are removed by a simple 20-fold dilution of the sample. At 10-fold sample dilution, chloride interference can be removed by adding 0.3M ammonium nitrate together with 0.01M aluminium + 0.01M strontium as a matrix modifier. The same matrix modifier is valid for use with 5-fold sample dilution and a cation-exchange step to avoid matrix affects from cations and chloride. The detection limit is about 8-10 ng/ml fluoride and the determination limit is 20 ng/ml. The precision of peak-height measurement at 0.2 mug/ml is 5-7%.  相似文献   

11.
Fung YF  Lau KM 《Electrophoresis》2001,22(11):2192-2200
A new analytical procedure is developed using a strong complexing agent, 1,10-phenanthroline (Phen), for direct UV detection of Zn, Mn, Cu, Co, Cd, and Fe at microg/L concentrations in environmental water samples. The metal chelates formed showed different electrophoretic mobilities and solved the comigration problem for capillary electrophoresis (CE) separation of free metal ions. To obtain stable metal-Phen chelates during the capillary zone electrophoresis (CZE) run, both pre-column and on-column complexation are required and threefold excess of Phen over metal ions should be added to the sample. The optimized background electrolyte (BGE) consists of 30 mM hydroxylamine hydrochloride and 0.1% methanol at pH 3.6. Under hydrodynamic sampling, CE run at + 20 kV in 65 cm x 0.05 mm ID fused-silica column with detection at 265 nm, baseline separation, satisfactory working ranges (10 microg/L to 5.5 mg/L), sensitive detection limits (1-3 microg/L), good repeatability for migration times (relative standard deviation, RSD 0.36-0.81%, n = 5), peak area (RSD 3.2-4.2%, n = 5) and peak height (RSD 3.2-4.5%, n = 5) were obtained for the metal cations investigated. The reliability of the method was established by parallel determination using the inductively coupled plasma-atomic emission spectrometry (ICP-AES) method giving results within statistical variation. The procedure developed is shown to provide a quick, sensitive, precise, and economic method for simultaneous determination of metal cations that can form stable chelates with Phen.  相似文献   

12.
This work deals with simultaneous determination of ammonium, calcium, magnesium, sodium and potassium in drinking waters by capillary zone electrophoresis (CZE) on a column-coupling (CC) chip with suppressed hydrodynamic and electroosmotic transports. CZE separations were carried out in a propionate background electrolyte at a low pH (3.2) containing 18-crown-6-ether (18-crown-6) to reach a complete resolution of the cations. In addition, triethylenetetramine (TETA) coated the inner wall surface of the chip channels. The concentration limits of detection (cLOD) for the studied cations ranged from 4.9 to 11.5 μg/l concentrations using a 900 nl volume of the sample injection channel. 93–106% recoveries of the cations in drinking waters indicate a good predisposition of the present method to provide accurate analytical results.  相似文献   

13.
A chelating resin, cross-linked chitosan modified with the glycine moiety (glycine-type chitosan resin), was developed for the collection and concentration of bismuth in aquatic samples for ICP-MS measurements. The adsorption behavior of bismuth and 55 elements on glycine-type chitosan resin was systematically examined by passing a sample solution containing 56 elements through a mini-column packed with the resin (wet volume; 1 ml). After eluting the elements adsorbed on the resin with nitric acid, the eluates were measured by ICP-MS. The glycine-type chitosan resin could adsorb several cations by a chelating mechanism and several oxoanions by an anion-exchange mechanism. Especially, the resin could adsorb almost 100% Bi(III) over a wide pH region from pH 2 to 6. Bismuth could be strongly adsorbed at pH 3, and eluted quantitatively with 10 ml of 3 M nitric acid. A column pretreatment method with the glycine-type chitosan resin was used prior to removal of high concentrations of matrices in a seawater sample and the preconcentration of trace bismuth in river water samples for ICP-MS measurements. The column pretreatment method was also applied to the determination of bismuth in real samples by ICP-MS. The LOD of bismuth was 0.1 pg ml(-1) by 10-fold column preconcentration for ICP-MS measurements. The analytical results for bismuth in sea and river water samples by ICP-MS were 22.9 +/- 0.5 pg ml(-1) (RSD, 2.2%) and 2.08 +/- 0.05 pg ml(-1) (RSD, 2.4%), respectively.  相似文献   

14.
Within the framework of a European Union (EU) research project entitled "Food Safety Screening: Synthetic Glucocorticoids (QLK1-1999-00122)," an international interlaboratory ring test was organized to compare and evaluate different liquid chromatography/mass spectrometry (LC/MS) confirmatory methods that are applied in European monitoring programs for detecting the use of synthetic glucocorticoids. Liver and urine samples of bovines treated with synthetic glucocorticoids were collected and sent to the participants of the study for analysis. Participants received 3 liver and 3 urine samples and were free to use either their own LC/MS method or an LC/MS-based method developed during the EU research project. The residue concentrations in the samples were calculated as the mean of the concentrations reported by each laboratory. The mean dexamethasone concentration of liver sample L1 was calculated as 2.27 microg/kg [relative standard deviation (RSD) 43%, n = 9], which exceeds the maximum residue level (MRL) of 2 microg/kg. Three of the 9 laboratories (33%) reported concentration levels less than 2 microg/kg, resulting in obviously false compliant results. The overall mean concentration of flumethasone in liver sample L2 was calculated as 3.27 microg/kg (RSD 33%, n = 8). Applying a comparable limit for flumethasone of 2 microg/kg, 8 of the 9 laboratories would have obtained a correct noncompliant result. As for the blank liver sample, 1 participant found a false noncompliant result. The urine sample U1 contained prednisolone residues at a mean concentration of 1.58 microg/kg (RSD 43%, n = 9). Four out of 9 results were less than a theoretical minimum required performance level (MRPL) of 2 microg/kg. The calculated concentration of dexamethasone in urine sample U3 was 5.21 microg/kg (RSD 62%, n = 9). One of the 9 results was lower than 2 microg/kg. Urine sample U2 was correctly reported as blank by all participants.  相似文献   

15.
A capillary zone electrophoresis (CZE)-potential gradient detection (PGD) method coupled with field-amplified sample injection was developed to determine alkali metal, alkaline-earth metal, nickel, lead and ammonium ions. The capillary surface was coated with dialkylimidazolium-based ionic liquid and thus the electroosmotic flow (EOF) of the capillary was reversed. The buffer composed of 7.5 mM lactic acid, 0.6 mM 18-crown-6, 12 mM alpha-cyclodextrin (alpha-CD); it was adjusted to pH 4.0 by 1-hexyl-3-methylimidazolium hydroxide. The 11 cations were baseline separated within 14 min with 5.1-18.9 x 10(4) plates (for 40-cm-long capillary) in separation efficiency, and the detection limits were in the range of 0.27-7.3 ng/ml. The method showed good reproducibility in terms of migration time with RSD < or = 0.90% for run-to-run and < or = 1.65 for day-to-day assessment.  相似文献   

16.

A method for isotachophoretic determination of potassium and ammonium cations in fertilizers and silage was developed. A capillary of 0.4 mm i.d. and 100 mm effective length made of fluorinated ethylene–propylene copolymer was filled with an electrolyte system consisting of 10 mmol L−1 RbOH + 0.1% (w/v) hydroxyethylcellulose, adjusted to pH 9.0 with l-histidine (leading electrolyte) and 10 mmol L−1 lithium citrate (terminating electrolyte). Using contactless conductivity detection, the calibration curves in the tested concentration range up to 0.5 mmol L−1 were linear for both cations. The concentration detection limits for potassium and ammonium were 2.9 and 2.7 μmol L−1, respectively. RSD values of step lengths (n = 6) were 1.3% for potassium and 1.5% for ammonium. The separation time was about 20 min. Similar results were obtained with cesium cation used as the leading ion, however, in the system with rubidium better resolution of other cations present in tested matrices was reached. The elaborated method is simple to perform, sufficiently sensitive and accurate and can be recommended as an alternative procedure to the methods used so far for the determination of potassium and ammonium.

  相似文献   

17.
用HNO3、HF溶样,草酸遮蔽干扰离子,钼酸铵与硅酸反应生成硅钼杂多酸,加入硫酸亚铁铵后形成硅钼蓝,在660nm波长处比色。硅铁标准样品中硅含量测定结果的相对标准偏差为0.27%~0.28%,该方法测定结果与高氯酸脱水重量法的测定结果相当。  相似文献   

18.
Zhang T  Ye M  Hu Z  Pan G  Liang L  Wu S 《色谱》2012,30(4):400-403
建立了毛细管离子色谱测定酒、饮料等样品中阳离子的分析方法。使用毛细管离子色谱柱IonPac CS12A(250 mm×0.4 mm, 8 μm),以甲基磺酸淋洗液发生器(EGC-MSA)产生18 mmol/L的甲基磺酸为流动相,进样量0.4 μL,在流速0.01 mL/min的条件下,采用自循环抑制电导检测的方法对啤酒、葡萄酒、白酒、果汁及奶茶等样品中的阳离子含量进行检测。结果表明,毛细管离子色谱法能满足阳离子含量的测定要求,系统稳定不易堵,在灵敏度方面优于常规离子色谱系统。该方法能够快速、准确地测定酒、饮料等样品中的5种阳离子(钠、铵、钾、镁和钙),回归方程的相关系数在0.9997以上,实际样品的加标回收率为95.2%~103.3%。该方法具有灵敏度高,操作简单,环境友好的特点。  相似文献   

19.
离子色谱法测定污水中阴、阳离子的前处理   总被引:1,自引:0,他引:1  
研究了离子色谱技术在污水中常见阴、阳离子监测方面的应用。根据大量实验数据提出了水样前处理方法,确定了色谱条件。污水样品经前处理后,阴离子测定结果的相对标准偏差为0.71%-4.4%,回收率为94.6%-108.6%。  相似文献   

20.
Rong L  Liu Z  Ma M  Liu J  Xu Z  Lim LW  Takeuchi T 《Analytical sciences》2012,28(4):367-371
A non-suppressed capillary ion chromatographic method with a laboratory-made packed cation-exchange column (100 mm × 0.32 mm i.d.) was developed for the separation and simultaneous determination of five common inorganic cations (sodium, ammonium, potassium, magnesium and calcium). Cation exchangers were prepared by the reaction of the hydroxyl group on the surface of diol-group bonded silica gel with 1,3-propanesultone in methanol. Simultaneous separation of these five common inorganic cations were achieved within 17 min using 1 mM methanesulfonic acid and 0.1 mM 15-crown-5 ether in methanol-water (8:2, v/v) as the eluent. The effects of organic solvents and crown ethers in the eluent on the retention of analytes were investigated. The limits of detection (S/N = 3) of the cations were in the range of 18-124 μg/l, the linear correlation coefficients were 0.9991-0.9998, and the RSD values of retention time and peak height were all smaller than 2.1%. The present analytical method was successfully applied to the rapid and direct determination of inorganic cations in samples of river water and commercial drinks, with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号