首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
高压研究对于提高超导转变温度和探索高温超导机制是一种非常重要的手段。环境压力下TL-1223相单晶样品和Tl-1223和Tl-1212相混合单晶样品的抗磁起始转变温度分别为102K和116K。高压研究表明Tl-1223相单晶样品的初始压力系数为dTc/dp=4.2K/Gpa,当压力达到6.4Gpa时,Tc达到最大值116K,比环境压力下升高了14K。Tl-1223和Tl-1212相混合单晶的初始压  相似文献   

2.
郭常新 《发光学报》1995,16(3):238-243
研究了Na5Tb(WO4)4单晶的高压发光规律,化学计量的Na5Tb(WO4)4基质发光单晶的发光来源于基质中高浓度Tb3+.用金刚石对顶砧显微光谱系统在0-4GPa范围内研究了Na5Tb(WO4)4的室温高压光谱,确定了各发射谱线的高压移动率.对Tb3+的5D4→7Fj(j=0,1,2,3,4,5),测到18条谱线高压移动率中除一条(5D4→7F2,常压峰值15509cm-1)蓝移外,都红移,红移率最大为-19.5cm-1/GPa(对应谱线5D4→7F4,常压峰值16876cm-1),与Tb3+在其它基质中相比,此移动率很大.  相似文献   

3.
对掺Cr~(3 )乙酰丙酮铝单晶的(001),(100)和(110)晶面进行晶面旋转EPR扫描,得到共振磁场随旋转角度变化的实验图形,根据本征插方法编写的程序,对实验谱图进行投合,得到下述顺磁参数,D=0.5870±O.005cm~(-1),E=-0.00490±0.0001cm~(-1),g~2=g_y=1.965土0.001,g_r=1.984±0.001.  相似文献   

4.
在6 GPa和1500 ℃的压力和温度范围内, 利用高压熔渗生长法制备了纯金刚石聚晶, 深入研究了高温高压下金刚石聚晶生长过程中碳的转化机制. 利用光学显微镜、X-射线衍射、场发射扫描电子显微镜检测, 发现在熔渗过程中金刚石层出现了石墨化现象, 在烧结过程中金刚石颗粒表面形貌发生了变化. 根据实验现象分析, 在制备过程中存在三种碳的转化机制: 1)金属熔渗阶段金刚石颗粒表面石墨化产生石墨; 2)产生的石墨在烧结阶段很快转变为填充空隙的金刚石碳; 3)金刚石直接溶解在金属溶液中, 以金刚石形式在颗粒间析出, 填充空隙. 本文研究碳的转化机制为在高温高压金属溶剂法合成金刚石的条件下(6 GPa和1500 ℃的压力和温度范围内)工业批量化制备无添加剂、无空隙的纯金刚石聚晶提供了重要的理论指导.  相似文献   

5.
红外光谱法测定聚(乳酸-苯丙氨酸)共聚物的含量   总被引:1,自引:1,他引:1  
分别以苯丙氨酸和乳酸为原料合成了3-苯甲基-2,5-吗啉二酮(PMD)与丙交酯(LA),以PMD和LA作为聚合单体经开环聚合分别得到PMD均聚物(PPMD)、丙交酯均聚物(PLA)及聚(乳酸-苯丙氨酸)共聚物。对合成的均聚物进行红外分析,确定1 671.53和870.82 cm-1处的吸收峰分别为PPMD和PLA的特征峰。根据以上两种特征吸收峰并以朗伯-比耳定律为理论依据,建立了利用红外光谱法测定聚(乳酸-苯丙氨酸)共聚物含量的方法。实验测定的标准工作曲线为y=0.055 67x+0.1091,r=0.999 3。利用该标准工作曲线定量测定了共聚物组分含量,其结果与1H NMR测定值一致,相对误差在2%以内,证明红外光谱法可方便、快捷地测定聚(乳酸-苯丙氨酸)共聚物组分含量,且适用于其他聚(乳酸-氨基酸)共聚物的含量测定,具有一定的实用性及推广性。  相似文献   

6.
利用1H NMR谱和NMR自扩散方法研究了2种不同分子量分布的聚(N-异丙基丙烯酰胺)(PNIPA)的相变行为和扩散性质,发现分子量分布对PNIPA水溶液的相变行为和扩散性质都有明显影响. 在PNIPA水溶液的相变温度-浓度曲线中,宽分子量分布PNIPA的曲线下降比较平缓,而低分子量分布PNIPA的曲线先是快速降低,然后趋于缓和. 在扩散实验中,宽分子量分布PNIPA的自扩散衰减曲线呈现一定的曲率,而且温度越低,浓度越高,曲率越大;而窄分子量分布PNIPA的自扩散衰减曲线几乎是直线,受温度和浓度的影响很小. 通过基于经典的Kohlrausch Williams-Watts延展指数关系式来拟合宽分子量分布PNIPA自扩散系数和常规方程拟合窄分子量分布PNIPA自扩散系数的2种方法对比,可以得到基于Kohlrausch-Williams-Watts的延展指数拟合,有效改善分子量分布造成的影响.  相似文献   

7.
耿传文  夏禹豪  赵洪阳  付秋明  马志斌 《物理学报》2018,67(24):248101-248101
利用微波等离子体化学气相沉积法,对单晶金刚石(100)晶面边缘进行精细切割抛光处理,形成偏离(100)晶面不同角度的倾斜面,在CH_4/H_2反应气体中进行同质外延生长,研究单晶金刚石边缘不同角度倾斜面对边缘金刚石外延生长的影响.实验结果表明,边缘倾斜面角度对边缘的单晶外延生长质量有影响,随着单晶金刚石边缘倾斜面角度的增大,边缘多晶金刚石数量先减少后增多,在倾斜角3.8°时边缘呈现完整的单晶外延生长特性.分析认为,边缘不同角度的倾斜面会改变周围电场强度和等离子体密度,导致到达衬底表面的含碳前驱物发生改变,倾斜面台阶表面的含碳前驱物浓度低于能形成层状台阶生长的临界浓度是减弱单晶金刚石生长过程中边缘效应的主要原因.  相似文献   

8.
通过NaBH4还原AgNO3制得银溶胶, 分析了结晶紫溶液表面增强拉曼光谱随银胶溶液pH值减小而逐渐减弱的机理。其原因是当加入酸改变银胶溶液pH值时, 在静电力作用下H+聚集在粗糙且存在偶电层(Ag+─负吸附质)的银胶表面, 使胶体中存在的表面等离子体共振吸附态的光吸收源随着H+浓度的增加逐渐减弱。并且H+与结晶紫的竞争作用又使结晶紫与银颗粒之间的吸附数量减少, 最终使结晶紫SERS强度随着pH值减小而逐渐减弱。我们测得银胶溶液的紫外──可见吸收光谱吸收峰强度随着pH值减小而逐渐减弱, 证明了分析的正确性。  相似文献   

9.
高压对食品胶溶液流变特性的影响   总被引:9,自引:0,他引:9       下载免费PDF全文
 经高压处理后,卡拉胶、琼胶、高甲氧基果胶、海藻酸钠、黄原胶和瓜尔豆胶等六种食品胶溶液的粘度变化不同。卡拉胶和琼胶溶液的粘度显著增加,高甲氧基果胶、海藻酸钠和瓜尔豆胶溶液的粘度变化较小,而黄原胶溶液的粘度明显降低。动态粘弹性测量表明,卡拉胶和琼胶溶液的贮藏模量(G′)在高压处理后明显减小,而且G′变得小于G″,这表明卡拉胶和琼胶溶液的弹性变小。高甲氧基果胶、海藻酸钠和瓜尔豆胶溶液的损耗正切值(tan δ=G″/G′)在处理后几乎没有变化,黄原胶溶液的tan δ略微减小。高压处理后食品胶溶液流变特性的不同变化表明,高压处理对食品胶的影响因其种类、胶分子的结构和胶在水溶液中的构象而异。文中对造成这些变化差异的可能原因进行了探讨。  相似文献   

10.
本文利用六面顶压机,在5.6 GPa, 1250—1450℃的高压高温条件下,分别选用FeNiCo和NiMnCo触媒合金开展了金刚石大单晶的生长实验,系统地考察了触媒组分对金刚石单晶裂纹缺陷的影响.首先,通过对两种组分触媒晶体生长实验对比发现,金刚石大单晶裂纹缺陷出现的概率与触媒组分相关联.同NiMnCo触媒相比, FeNiCo触媒生长的金刚石单晶更容易出现生长裂纹.我们认为,这与FeNiCo触媒黏度高、流动性差、碳素输运能力差、生长中晶体比表面积大,进而导致其对生长条件稳定性的要求较高有关.其次,两种触媒极限增重速度和生长时间的关系曲线表明,相同生长时间条件下, NiMnCo触媒生长金刚石单晶的极限增重速度相对较大.再次,扫描电子显微镜测试结果表明,裂纹缺陷的出现与否同晶体表面平整度的高低无必然联系,表面平整度高的金刚石单晶内部也可能存在裂纹缺陷.最后,经对金刚石单晶傅里叶微区红外测试结果进行分析,得出了氮杂质含量的高低与金刚石单晶裂纹缺陷的出现与否无内在关联性的研究结论.  相似文献   

11.
Several composites of poly (L-lactic acid) (PLLA) with poly (glycolic acid) (PGA) fibers were prepared. The isothermal crystallization kinetics and melting behavior of PLLA and all of the composites were characterized by using differential scanning calorimetry. The experimental data were processed by using the Avrami equation. The relative parameters, such as the Avrami exponent and half-time crystallization, revealed that PGA fibers had positive effects on the crystallization of PLLA, but these effects had only a minimal dependence on the PGA fiber content. Moreover, at low isothermal crystallization temperatures (85°C~110°C), recrystallization during the heating scan was observed, which could lower the melting point of the samples to a certain extent.  相似文献   

12.
Poly(L-lactic acid) (PLA) samples prepared by hot pressing were treated by two different processes: process a—quenching of the molten specimens in water, then annealing at high temperatures; process b—direct crystallization at high temperatures from the molten specimens. The crystal modification and morphology of PLA were investigated by differential scanning calorimetry, dynamic mechanical analysis, polarized light microscopy, and wide-angle X-ray diffraction. In the case of process a, the α′ (disordered α) crystal modification was formed at relatively low annealing temperature (T a < 100°C), while the ordered α phase was formed in the case of process a at high T a (> 100°C) and process b. Furthermore, in process a, the nucleation density of spherulites was higher and the radius of the spherulites was much smaller compared with that of the spherulites formed by process b. The effects of crystal modification and morphology on the impact behaviors of PLA were investigated by notched Izod impact testing. The macroscopic fracture toughness was discussed in terms of the microscopic structures. Finally, we suggest an alternative approach for the preparation of high-performance PLA.  相似文献   

13.
A series of poly(L-lactic acid)/polybutadiene (PLA/PB) biodegradable multiblock elastomers was synthesized and characterized. A two-step process to prepare PLA/PB multiblock elastomers was applied. Melt polymerization was used to prepare poly(L-lactic acid) (PLA) terminated with hydroxyl groups and, at the same time, hydroxyl-terminated polybutadiene (HTPB) and 1,6-hexamethylene diisocyanate (HDI) were employed to synthesize diisocyanate-terminated polybutadiene (ITPB). Then, PLA and ITPB were reacted with different PLA/PB weight ratios. Consequently, a series of PLA/PB biodegradable poly(ester-urethane)s with crosslinked chains was obtained. Swelling characteristics and crosslink density of the crosslinked elastomer were investigated. DMA was applied to characterize its thermal properties. The measurement of mechanical properties showed that a PLA/PB elastomer with adjustable mechanical properties was synthesized. Micromorphology, hydrophobicity, and degradability of the material were also characterized.  相似文献   

14.
Poly (L-lactic acid) (PLLA) microspheres were prepared by a solvent evaporation method based on an oil/water emulsion. The effect of the mass ratio of PLLA and poly(vinyl alcohol) (PVA) on the formation of the microspheres was discussed, and the influence of extraction speed of dichloromethane on the microsphere morphology was also studied. Moreover, the influences of the PLLA concentration and the volume ratio of water phase to dichloromethane phase were investigated. The results showed that stable microspheres can be obtained under the conditions that the mass ratio of PLLA to PVA is 20:1. Porous microspheres were obtained under faster evaporating speed of dichloromethane. The microsphere size increased with increasing PLLA concentration. The microsphere size also increased with the increase of the volume ratio of water phase to dichloromethane phase.  相似文献   

15.
The kinetics of isothermal melt crystallization of poly(trimethylene terephthalate) (PTT)/poly(butylene terephthalate) (PBT) blends were investigated using differential scanning calorimetry (DSC) over the crystallization temperature range of 184–192°C. Analysis of the data was carried out based on the Avrami equation. The values of the exponent found for all samples were between 2.0 and 3.0. The results indicated that the crystallization process tends to be two‐dimensional growth, which was consistent with the result of polarizing light microscopy (PLM). The activation energies were also determined by the Arrhenius equation for isothermal crystallization. The values of ΔE of PTT/PBT blends were greater than those for PTT and PBT. Lastly, using values of transport parameters common to many polymers (U*=6280 J/mol, T =T g – 30), together with experimentally determined values of T m 0 and T g, the nucleation parameter, K g, for PTT, PBT, and PTT/PBT blends was estimated based on the Lauritzen–Hoffman theory.  相似文献   

16.
High-pressure crystallized poly (ether ether ketone) (PEEK) samples were prepared with a piston-cylinder apparatus by varying temperature, pressure, crystallization time, and molecular weight, and were investigated using wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The applied etching experiments showed that the chemical resistance of the polymer was significantly improved through the high-pressure treatment. The results also revealed that PEEK spherulites with folded-chain lamellae as substructures and with different characteristics were formed at high pressure. Crystalline elliptical micro-spheres consisting of flake-like lamellae with rugged surfaces were observed on the etched samples with SEM, which may diversify niche applications in functional fillers, carriers, adsorbents, etc. Morphological observations suggested that such micro-spheres might possibly have evolved from a novel dendritic crystal. Furthermore, a granular substructure of the lamellae was observed in these single-phase polymer systems with rigid molecular backbones, which further confirmed the model developed by Strobl for polymer crystallization.  相似文献   

17.
The effect of blend composition on crystallization morphology and behavior of a crystalline/crystalline blend, poly(l-lactic acid) (PLLA)/poly(ethylene oxide) (PEO), during slow, non-isothermal crystallization was studied by polarized light microscopy (PLM) connected with a hot-stage and differential scanning calorimetry (DSC). The results showed that all of the PLLA/PEO blends produced spherulites which gradually became bigger and looser, as well as coarser, with the increment of the PEO content, indicating that the PEO crystals was resided in the interlamellar or interfibrillar (between clusters of commonly oriented lamellae) regions of the PLLA spherulites. In the (25/75) and (10/90) blends, the nucleation and growth processes of the PEO spherulites could be clearly observed in the pre-existing PLLA spherulites. The onset crystallization temperature and the melting point of one component decreased with increasing the content of the other one owing to the good miscibility of the two components in the non-crystalline state and the interaction between their macromolecules, indicating that the crystallization of each component was influenced by the other one.  相似文献   

18.
Poly(lactic acid) (PLA)/poly(ethylene-co-vinyl alcohol) (EVOH) blends were prepared via melt blending to improve the barrier properties of PLA. The phase morphologies and final properties (rheological behavior, thermal and dynamical-mechanical features, barrier properties, and mechanical behaviors) of the blends were investigated as a function of the EVOH content. The results indicated that hydroxyl groups of EVOH promoted the degradation of PLA, and thus affected the viscosities and morphologies of the resulting blends. The intrinsic viscosities of PLA in the blends decreased with the content of EVOH. The PLA and EVOH presented typical phase-separated morphologies, with a relatively small domain size of the EVOH phase. The EVOH enhanced the cold-crystallization behavior of PLA. The barrier properties to water vapor and oxygen increased linearly with increasing EVOH content.  相似文献   

19.
To determine the factors influencing the retardation of the crystallization of poly(trimethylene terephthalate) (PTT) when PTT is blended with polycarbonate (PC), different PTT/PC blends were prepared via the melt mixing method. The relationships between the crystallization behavior and blend composition, as well as the phase morphology, were investigated. The results showed that the predominant reason for the retardation in crystallization is due to the PC content and phase morphology. The PC influences the crystallization of PTT via two methods. First, it retards PTT crystallization. Secondly, the PC exhibits a nucleation effect on the PTT crystallization which is, however, much weaker compared to the negative effect PC exerts with regards to PTT crystallization. When the processing temperature and shear rate remains unchanged, the two effects of PC determine the crystallization behavior of the blend. The phase morphology, which is strongly dependent on the mixing temperature and the shear rate, and which is also related to mixing time, had an appreciable impact on PTT crystallization. In the case of similar adhesion with the interface, a finer PC phase domain would show a slightly stronger nucleation effect on PTT crystallization.  相似文献   

20.
Investigations concerning the interactions between the polymeric pair constituted of poly(aspartic acid) (PAS) as a proton-donating polycarboxilic acid and poly(ethylene glycol) (PEG) as a proton-accepting compound are continued from previous studies. The complexation between PAS and PEG has potential use as a matrix for encapsulation of bioactive substances with potential biomedical applications. The interactions that occurred were monitored in dilute solutions by determining the particle size distribution and the zeta potential (ZP) through laser light scattering method; data associated with oscillatory rheology was used as a complementary analysis. The influence of the ratio between the components and the temperature conditions during the complexation process brought additional data concerning the intermolecular links formed through hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号