首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Tetrahymena trans-splicing ribozyme can edit RNA in a sequence-specific manner, but its efficiency needs to be improved for any functional rescues. This communication describes a simple method that uses a bacterial enzyme beta-lactamase to report trans-splicing activity of Tetrahymena ribozyme in single living mammalian cells by fluorescence microscopy and flow cytometry. This enzyme-based single-cell detection method is highly sensitive and compatible with living cell flow cytometry, and should allow a cell-based systematic screening of a vast library of ribozymes for better trans-spliced ribozyme variants.  相似文献   

3.
4.
5.
A high-performance liquid chromatography/positive ion electrospray tandem mass spectrometry method for the simultaneous quantification of efavirenz, emtricitabine and tenofovir was developed and validated with 100 microL human plasma. Following solid-phase extraction, the analytes were separated using a gradient mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M + H]+ ions, m/z 316 to 168 for efavirenz, m/z 248-130 for emtricitabine and m/z 288-176 for tenofovir, m/z 482-258 for rosuvastatin (IS), m/z 260-116 for propranolol (IS). The method exhibited a 100-fold linear dynamic range for all the three analytes in human plasma (20-2000, 2-200 and 20-2000 ng/mL for efavirenz, emtricitabine and tenofovir respectively). The lower limit of quantification was 2 ng/mL for emtricitabine and 20 ng/mL for both efavirenz and tenofovir with a relative standard deviation of less than 11%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The total chromatographic run time of 4 min for each sample made it possible to analyze more than 250 human plasma samples per day. The method is precise and sensitive enough for its intended purpose. The method is also successfully applied to quantify efavirenz, emtricitabine and tenofovir concentrations in a rodent pharmacokinetic study.  相似文献   

6.
7.
8.
A liquid chromatography-tandem mass spectrometric assay for the determination of the antiretroviral nucleoside emtricitabine in human plasma was developed and validated using a simple sample pre-treatment procedure. After addition of 5'-deoxy-5-fluorocytidine as the internal standard and protein precipitation with acetonitrile, the supernatant was directly injected in the isocratic chromatographic system using a polar embedded reversed-phase column and formic acid in water-methanol as the eluent. The eluate was completely led into an electrospray interface with positive ionization and the analytes were quantified using triple quadrupole mass spectrometry. The assay was validated in the range 5-5000 ng/mL. Intra-day precisions were 相似文献   

9.
10.
Although human telomerase catalytic subunit (TERT) has several cellular functions including telomere homeostasis, genomic stability, cell proliferation, and tumorigenesis, the molecular mechanism underlying anti-apoptosis regulated by TERT remains to be elucidated. Here, we show that ectopic expression of TERT in spontaneously immortalized human fetal fibroblast (HFFS) cells, which are a telomerase- and p53-positive, leads to increases of cell proliferation and transformation, as well as a resistance to DNA damage response and inactivation of p53 function. We found that TERT and a mutant TERT (no telomerase activity) induce expression of basic fibroblast growth factor (bFGF), and ectopic expression of bFGF also allows cells to be resistant to DNA-damaging response and to suppress activation of p53 function under DNA-damaging induction. Furthermore, loss of TERT or bFGF markedly increases a p53 activity and DNA-damage sensitivity in HFFS, HeLa and U87MG cells. Therefore, our findings indicate that a novel TERT-bFGF axis accelerates the inactivation of p53 and consequent increase of resistance to DNA-damage response.  相似文献   

11.
12.
13.
Abstract

In this study, a new copper(II) complex with zalcitabine (ddC) drug was synthesized and characterized by Fourier-transform infrared spectroscopy (FT-IR), ultraviolet–visible spectroscopy (UV–vis), mass spectroscopy, thermal gravimetric analysis and density functional theory. Then, its effect on calf-thymus DNA (CT-DNA) was investigated using absorption and fluorescence spectroscopy and viscometry technique. On the basis of FT-IR and computational studies, zalcitabine chelates with copper using its C(2)=O and N(3) group in the [Cu(zalcitabine)Cl2] ([CuCl2(ddC)]) complex. On the basis of the electrospray ionization mass spectroscopy of the Cu–ddC complex, monomeric copper complex [C9H13N3O3CuCl2] was formed. The results of fluorescence studies indicated increasing to around 2.5 times in emission intensity of fluorescence signal of the complex. The enhancement of emission intensity and also the positive ΔH and positive ΔS values suggested that the hydrophobic interaction plays a major role in the binding with overall binding constant of 1(±0.25)×105 M?1. The ΔG value implied that the interaction occurred between DNA and the complex formation was spontaneous. Finally, changes in the relative viscosity showed that groove binding must be the predominant form of binding. Evidences are provided that [Cu(ddC)Cl2] could interact with DNA via minor groove interaction mode.  相似文献   

14.
15.
16.
Here we report the synthesis of a novel PNA based neocuproine.Zn RNA cleaving agent; we demonstrate that such agents sequence specifically cleave a synthetic RNA target and in particular the RNA component of human telomerase.  相似文献   

17.
18.
The function of RNA depends on its ability to adopt complex and dynamic structures, and the incorporation of site-specific cross-linking probes is a powerful method for providing distance constraints that are valuable in RNA structural biology. Here we describe a new RNA-RNA cross-linking strategy based on Pt(II) targeting of specific phosphorothioate substitutions. In this strategy cis-diammine Pt(II) complexes are kinetically recruited and anchored to a phosphorothioate substitution embedded within a structured RNA. Substitution of the remaining exchangeable Pt(II) ligand with a nucleophile supplied by a nearby RNA nucleobase results in metal-mediated cross-links that are stable during isolation. This type of cross-linking strategy was explored within the catalytic core of the Hammerhead ribozyme (HHRz). When a phosphorothioate substitution is installed at the scissile bond normally cleaved by the HHRz, Pt(II) cross-linking takes place to nucleotides G8 and G10 in the ribozyme active site. Both of these positions are predicted to be within ~8 ? of a phosphorothioate-bound Pt(II) metal center. Cross-linking depends on Mg(2+) ion concentration, reaching yields as high as 30%, with rates that indicate cation competition within the RNA three-helix junction. Cross-linking efficiency depends on accurate formation of the HHRz tertiary structure, and cross-links are not observed for RNA helices. Combined, these results show promise for using kinetically inert Pt(II) complexes as new site-specific cross-linking tools for exploring RNA structure and dynamics.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号