共查询到20条相似文献,搜索用时 81 毫秒
1.
改良ANN-BP算法在炭黑工艺建模中的应用与研究 总被引:6,自引:1,他引:5
针对目前炭黑行业生产主要以经验为主的不利境况,将人工神经网络误差反向传播算法(ANN-BP算法)用于炭黑工艺建模,比较三种ANN-BP算法结果后,利用基于动量法和学习速率自适应调整改良的ANN-BP算法建立了炭黑工艺参数与指标之间的非线性映射模型,并与多元线性回归、主成分回归建立的线性模型进行了比较,结果表明,改良ANN-BP算法预测相对误差在5.6%以内,且有较好的容错能力,比较好的解决了炭黑生产过程中的预测模型构建问题。 相似文献
2.
在分析现有的基于高斯核的支持向量机(包括基于K-邻域法的支持向量机)的优缺点的基础上,通过对支持向量机之所以能够描述数据集的分布特征的本质进行分析,突破目前在构造支持向量机中存在的"所有支持向量与样本之间的在特征空间中的内积所对应的核函数参数一定要相等"的这一苛刻要求,提出了用于模式识别的基于正反馈的支持向量机.给出了基于正反馈的支持向量机的算法.通过对人工数据和现实数据的仿真实验,表明基于正反馈的支持向量机在推广性能方面明显优于现有的支持向量机. 相似文献
3.
在保证足够信息量的前提下,针对合理减少气象观测站的实际问题,首先利用主成分分析(PCA) 降低样本数据的维数,其次利用支持向量回归机(SVR)对样本进行有效的回归,然后结合优化软件lingo对凸二次规划问题(与支持向量回归机相对应)进行求解,最终得出基于主成分分析-支持向量机回归预测优化模型。 相似文献
4.
为了有效改进支持向量机(SVM)在工业过程中的故障检测性能,提出一种基于核主成分空间支持向量机的过程监视方法。首先,运用核主成分分析方法(KPCA)处理数据,获取数据的核主成分,在核主成分空间计算Hotelling′s T2统计量;然后,在T2统计量基础上加入时滞特性和时差特性,并将三者组合成增广矩阵,运用正常数据和故障数据的增广矩阵训练SVM模型;最后,运用SVM模型对测试数据进行分类,实现对故障的有效检测。将本研究方法应用于非线性数值例子和田纳西-伊斯曼工业过程中,与PCA、KPCA、传统的SVM和KPCA-LSSVM方法作比较,进一步验证了该方法的有效性。 相似文献
5.
支持向量机在机械设备振动信号趋势预测中的应用 总被引:13,自引:0,他引:13
将支持向量机(SVMs)用于机械设备振动信号趋势预测中,研究了SVMs参数及核函数类型对SVMs预测能力的影响.试验显示,在短期预测中4种核函数有着基本相同的预测能力,而在长期预测中,径向基函数核和多项式核表现出了相对较高的预测能力,同线性核和神经网络核相比,它们的归一化均方误差约降低了20%.SVMs与向后传播神经网络、径向基函数网络和广义回归神经网络预测能力的对比表明,实现了结构风险最小化原理的SVMs具有更好的预测能力,在长期预测中,其归一化均方误差约降低了15%。 相似文献
6.
通过利用灌浆过程中的监测数据建立灌浆过程的数学模型,解决机理模型或参数辨识模型不能很好地适应地层和裂隙变化的问题.首先以灌浆管道中流体为对象,依据压力平衡和质量守恒定律来定性分析参数的影响关系,提取孔口压力与注入流量作为反映灌浆过程变化的主要特征参量;然后描述支持向量机建模的基本原理,并研究模型参数优化求取方法,提出嵌... 相似文献
7.
支持向量机是一种基于结构风险最小化原理的新一代机器学习方法,在分类和回归估计方面已显示出了很好的应用前景.本文在简要介绍支持向量回归新方法的基础上,给出用于非线性系统进行辨识的支持向量机模型和多输入支持向量机的核函数构造方法,并将支持向量机与神经网络的非线性系统辨识效果进行了比较分析.实验结果表明,支持向量机具有比神经网络更强的非线性系统辨识能力和更好的泛化能力. 相似文献
8.
王平 《科技情报开发与经济》2009,19(2)
支持向量机(Support VectorMachine,SVM)是近年来受到广泛关注的一种学习机器.将支持向量机引入环境时序预测中,有效地求解了空气中降尘的预测问题.实验结果表明,支持向量机不仅具有较强的理论背景,而且具有更强的预测预报能力. 相似文献
9.
基于支持向量机回归的港口吞吐量非线性组合预测 总被引:3,自引:0,他引:3
提出了一种基于支持向量机回归算法的港口吞吐量非线性组合建模预测方法,并运用该方法进行了港口吞吐量预测,同时将该预测结果与其他方法的预测结果进行了比较.结果表明,该方法具有很强的学习及泛化能力,在处理具有一定程度的不确定性的非线性系统的组合建模预测问题时具有很好的应用价值. 相似文献
10.
赵世安 《广西右江民族师专学报》2011,(3):56-60
利用主成分分析(PCA)方法优选神经网络集成个体,利用支持向量机回归集成生成输出结论,建立一个PCA支持向量机回归集成股市预测模型。试验表明,该模型能有效提高神经网络集成系统的泛化能力,预测精度高,稳定性好。 相似文献
11.
能源需求的支持向量机预测 总被引:3,自引:1,他引:2
对灰色、神经网络和支持向量机的三个预测模型进行了研究,以某城市的1999-2006年能源需求为例,对能源需求进行了预测.经过比较,支持向量机的预测方法精度较高. 相似文献
12.
将改进的支持向量回归机与B-样条网络相结合,提出了一种建立回归曲线模型的新算法。实验仿真结果说明了这种算法是可行和有效的。 相似文献
13.
为克服传统的模糊支持向量机隶属度函数都是基于样本与类中心距离进行设计所带来的局限性问题,提出了基于样本到超平面距离的新隶属度函数设计方法。该方法从支持向量机的回归本质出发,通过更加合理地设计隶属度函数,提高支持向量机的回归的泛化鲁棒能力。仿真结果证明,该方法具有更好的鲁棒性,提高了模糊支持向量机的泛化能力。 相似文献
14.
刘勇志 《空军工程大学学报(自然科学版)》2007,8(4):49-52
泛化能力是智能方法用于参数预测的最重要的问题之一,提出了支持向量回归集成方法。为了增加个体之间的差异性,提出了基于聚类方法的个体生成方法。首先利用聚类方法将样本分为若干子类,然后用不同结构的支持向量回归学习不同的样本子类,权值由个体在验证集上的泛化误差决定。将ESVR陀螺仪参数飘移数据的预测,并与单支持向量回归,单神经网络,神经网络集成以及组合预测方法进行比较。结果证实,ESVR的预测精度总体高于其他方法。 相似文献
15.
在利用多元线性回归理论确定飞机机翼标定试验的载荷-应变关系时,对试验数据的精度和容量要求较高,针对这一问题,提出了一种基于支持向量机的机翼载荷确定方法。采用某型飞机机翼地面标定试验数据和飞行实测数据进行实例验证,结果显示两种载荷模型获得的载荷-时间历程整体上较为一致,支持向量机载荷模型的校验误差小于多元线性回归模型,表明支持向量机可作为获取机翼载荷的一个更加有效的手段。 相似文献
16.
17.
针对现有回归型加权支持向量机直接选择加权系数法存在的不足,提出了一种对加权系数进行寻优的新方法——动态自适应加权算法.通过对权系数进行的自适应迭代调整,以确定其最优值,并进行了实验仿真.仿真结果表明:采用该方法确定的最优加权系数,可以对预测样本数据进行更准确的回归估计. 相似文献
18.
基于模糊回归支持向量机的短期负荷预测 总被引:2,自引:0,他引:2
支持向量机(SVM)是一种新颖的机器学习方法,具有泛化能力强、全局最优和计算速度快等突出优点.模糊数学在不确定性、不精确性及噪声引起的问题上,有其特有的计算分析操作,能有效地分析和处理模糊信息.研究了一种模糊回归支持向量机模型,该模型将两者有机结合,发挥了各自的优点.将其应用到电力系统短期负荷预测,仿真结果表明,所提方法不仅具有与支持向量机方法相同的预测精度,且提供了更多的有用信息. 相似文献
19.
基于支持向量机的商业银行信用风险评估模型 总被引:11,自引:2,他引:11
贷款业务是商业银行最重要的资产业务,构建一个适用的信用风险评估模型十分重要.本基于近年来在智能学习系统领域发展起来的新理论,引入小样本学习的通用学习算法——支持向量机(SVM).建立了商业银行的信用风险评估模型,通过与多元判别分析、以及神经网络模型的比较,证实了该方法用于风险评估的有效性及优越性. 相似文献
20.
介绍机器学习的表示方式,分析和比较机器学习中经验风险最小化原则和结构风险最小化原则,引出用于回归估计的支持向量机,并用数学方式阐述其基本思想,讨论支持向量机技术发展中存在的主要问题. 相似文献