首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two stepwise approaches to preparing large unsymmetrical macrocycles incorporating diethylenetriamine lateral units are described: the first utilises protecting group chemistry, whereas the second exploits irreversible amide bond formation in the presence of an excess of the amine. In the first approach condensation of two equivalents of N-acetyldiethylenetriamine 1 with 2,6-diformyl-4-methylphenol, followed by a sodium borohydride reduction of the newly formed imine bonds and acidic removal of the protecting groups, yields a phenol-containing "two-armed" precursor as an HCl salt 2. Using the second approach the new pyridine-containing "two-armed" precursor , is prepared from 2,6-dimethylpyridinedicarboxylate and an excess of diethylenetriamine. These two "two-armed" di-primary amine precursors, 2 (after reaction with KOH) and 3, can be condensed with the dicarbonyl head units of choice. The lead templated condensation of 2 with 2,6-diacetylpyridine results in the formation of the macrocyclic dilead(II) complex {[Pb(II)(2)(L1)(Cl)](ClO(4))(2)}(infinity) 4. Transmetallation of 4 with three equivalents of copper(II) perchlorate produces Cu(II)(3)(L1)(OH)(ClO(4))(4) 5. Condensation of 3 with 2,6-diacetylpyridine or 2,6-diformylpyridine in the presence of barium(ii) ions results in the macrocyclic complexes [Ba(II)(H(2)L2)](ClO(4))(2) 6 and [Ba(II)(H(2)L3)](ClO(4))(2) 7, respectively. Copper(II) acetate templates the formation of the crystallographically characterised unsymmetrical macrocyclic complex [Cu(II)(3)(L4)(OH)(NCS)(2)].EtOH, 8.EtOH, from 3, 2,6-diformyl-4-methylphenol and NaNCS.  相似文献   

2.
From the system MF(2)/PF(5)/XeF(2)/anhydrous hydrogen fluoride (aHF), four compounds [Sr(XeF(2))(3)](PF(6))(2), [Pb(XeF(2))(3)](PF(6))(2), [Sr(3)(XeF(2))(10)](PF(6))(6), and [Pb(3)(XeF(2))(11)](PF(6))(6) were isolated and characterized by Raman spectroscopy and X-ray single-crystal diffraction. The [M(XeF(2))(3)](PF(6))(2) (M = Sr, Pb) compounds are isostructural with the previously reported [Sr(XeF(2))(3)](AsF(6))(2). The structure of [Sr(3)(XeF(2))(10)](PF(6))(6) (space group C2/c; a = 11.778(6) Angstrom, b = 12.497(6) Angstrom, c = 34.60(2) Angstrom, beta = 95.574(4) degrees, V = 5069(4) Angstrom(3), Z = 4) contains two crystallographically independent metal centers with a coordination number of 10 and rather unusual coordination spheres in the shape of tetracapped trigonal prisms. The bridging XeF(2) molecules and one bridging PF(6)- anion, which connect the metal centers, form complicated 3D structures. The structure of [Pb(3)(XeF(2))(11)](PF(6))(6) (space group C2/m; a = 13.01(3) Angstrom, b = 11.437(4) Angstrom, c = 18.487(7) Angstrom, beta = 104.374(9) degrees, V = 2665(6) Angstrom(3), Z = 2) consists of a 3D network of the general formula {[Pb(3)(XeF(2))(10)](PF(6))(6)}n and a noncoordinated XeF(2) molecule fixed in the crystal structure only by weak electrostatic interactions. This structure also contains two crystallographically independent Pb atoms. One of them possesses a unique homoleptic environment built up by eight F atoms from eight XeF(2) molecules in the shape of a cube, whereas the second Pb atom with a coordination number of 9 adopts the shape of a tricapped trigonal prism common for lead compounds. [Pb(3)(XeF(2))(11)](PF(6))(6) and [Sr(3)(XeF(2))(10)](PF(6))(6) are formed when an excess of XeF(2) is used during the process of the crystallization of [M(XeF(2))(3)](PF(6))(2) from their aHF solutions.  相似文献   

3.
Yang J  Sykora M  Meyer TJ 《Inorganic chemistry》2005,44(10):3396-3404
PF(6)(-) salts of the complexes [Ru(vbpy)(3)](2+) and [Os(vbpy)(3)](2+) (vbpy = 4-methyl-4'-vinyl-2,2'-bipyridine) have been electropolymerized into the pores of SiO(2) sol-gel films deposited on conductive Tin(IV)-doped indium oxide-coated glass slides (ITO, In(2)O(3):Sn). The resulting transparent composites represent a new class of materials of general formulas ITO/SG-poly-[Ru(vbpy)(3)](PF(6))(2) and ITO/SG-poly-[Os(vbpy)(3)](PF(6))(2). The composites are stable with respect to loss of complexes to the external solution and demonstrate several interesting phenomena: (1) Sol-gel pores, serving as diffusion channels for the vbpy complexes and counterions, play a key role in the formation of the polymer and dictate the electrochemical properties of the resulting composite. (2) Dynamic polymer growth occurs within individual diffusion channels creating parallel structures of filled and unfilled channels. (3) Unidirectional charge transfer and a "bilayer" effect have been shown to operate in ITO/SG-poly-[Ru(vbpy)(3)](PF(6))(2) films exposed to [Os(vbpy)(3)](PF(6))(2) in the external solution. (4) Photophysical properties of the metal-to-ligand charge transfer (MLCT) excited states in ITO/SG-poly-[Ru(vbpy)(3)](PF(6))(2) composites are significantly modified compared to electropolymerized films on ITO or model monomeric complexes in solution.  相似文献   

4.
We have prepared and characterized a new phenol-based compartmental ligand (H(2)L) incorporating 1,4,7-triazacyclononane ([9]aneN(3)), and we have investigated its coordination behavior with Cu(II), Zn(II), Cd(II), and Pb(II). The protonation constants of the ligand and the thermodynamic stabilities of the 1:1 and 2:1 (metal/ligand) complexes with these metal ions have been investigated by means of potentiometric measurements in aqueous solutions. The mononuclear [M(L)] complexes show remarkably high stability suggesting that, along with the large number of nitrogen donors available for metal binding, deprotonated phenolic functions are also involved in binding the metal ion. The mononuclear complexes [M(L)] show a marked tendency to add a second metal ion to afford binuclear species. The formation of complexes [M(2)(H(2)L)](4+) occurs at neutral or slightly acidic pH and is generally followed by metal-assisted deprotonation of the phenolic groups to give [M(2)(HL)](3+) and [M(2)(L)](2+) in weakly basic solutions. The complexation properties of H(2)L have also been investigated in the solid state. Crystals suitable for X-ray structural analysis were obtained for the binuclear complexes [Cu(2)(L)](BF(4))(2).(1)/(2)MeCN (1), [Zn(2)(HL)](ClO(4))(3).(1)/(2)MeCN (2), and [Pb(2)(L)](ClO(4))(2).2MeCN (4). In 1 and 2, the phenolate O-donors do not bridge the two metal centers, which are, therefore, segregated each within an N(5)O-donor compartment. However, in the case of the binuclear complex [Pb(2)(L)](ClO(4))(2).2MeCN (4), the two Pb(II) centers are bridged by the phenolate oxygen atoms with each metal ion sited within an N(5)O(2)-donor compartment of L(2)(-), with a Pb.Pb distance of 3.9427(5) A.  相似文献   

5.
Electrochromic multilayer films consisting of polyoxometalate (POM) cluster alpha-K(10)[P(2)W(17)O(61)].17H(2)O (P(2)W(17)), copper(II) complex [Cu(II)(phen)(2)](NO(3))(2) (phen = 1,10-phenithroline), and iron complex [Fe(II)(phen)(3)](ClO(4))(2) were fabricated on silicon, quartz and ITO substrates by layer-by-layer self-assembly method. The multilayer films, PSS/Cu(II)(phen)(2)/[(P(2)W(17)/Cu(II)(phen)(2))](n) and PSS/Fe(II)(phen)(3)/[(P(2)W(17)/Fe(II) (phen)(3))](n) were characterized by UV-vis spectra, X-ray photoelectron spectra, cyclic voltammetry (CV), chronoamperometric (CA) and in-situ spectral electrochemical measurements. The interesting feature of the electrochromic film is its adjustable color by reduction of both transition metal complex and polyoxometalate at different potentials. The multilayer films also exhibit high optical contrast, suitable response time and low operation potential due to the presence of mono-lacunary-substituted polyoxometalate and transition metal complex. This is the first example that the color of electrochromic film can be adjustable, which gives valuable information for exploring new electrochromic materials with tunable colors.  相似文献   

6.
The first heterobimetallic Bi:Sn alkoxide complexes [Bi(2)SnO(OCH(CF(3))(2))(5)(O(t)Bu)(3)(THF)] (1) and [BiSnO(OCH(CF(3))(2))(3)(O(t)Bu)(2)](2) (2) are described. The complexes were obtained through mixing and heating equimolar quantities of the component alkoxides, Bi(OCH(CF(3))(2))(3) and Sn(O(t)Bu)(4), under solvent-free conditions (1) and in THF (2). The solid-state structures were determined by single crystal X-ray diffraction showing ligand redistribution from Bi(III) to Sn(IV) in the two molecular species. Compound 2 behaves as a single-source precursor for the thermolytic formation of bismuth pyrostannate, Bi(2)Sn(2)O(7).  相似文献   

7.
Metal complexation studies were performed with the ditopic pyrimidine-hydrazone (pym-hyz) strand 6-hydroxymethylpyridine-2-carboxaldehyde (2-methyl-pyrimidine-4,6-diyl)bis(1-methylhydrazone) (1) and Pb(ClO(4))(2)·3H(2)O, Pb(SO(3)CF(3))(2)·H(2)O, Zn(SO(3)CF(3))(2), and Zn(BF(4))(2) to examine the ability of 1 to form various supramolecular architectures. X-ray crystallographic and NMR studies showed that coordination of the Pb(II) salts with 1 on a 2:1 metal/ligand ratio in CH(3)CN and CH(3)NO(2) resulted in the linear complexes [Pb(2)1(ClO(4))(4)] (2), [Pb(2)1(ClO(4))(3)(H(2)O)]ClO(4) (3), and [Pb(2)1(SO(3)CF(3))(3)(H(2)O)]SO(3)CF(3) (4). Two unusually distorted [2 × 2] grid complexes, [Pb1(ClO(4))](4)(ClO(4))(4) (5) and [Pb1(ClO(4))](4)(ClO(4))(4)·4CH(3)NO(2) (6), were formed by reacting Pb(ClO(4))(2)·6H(2)O and 1 on a 1:1 metal/ligand ratio in CH(3)CN and CH(3)NO(2). These grids formed despite coordination of the hydroxymethyl arms due to the large, flexible coordination sphere of the Pb(II) ions. A [2 × 2] grid complex was formed in solution by reacting Pb(SO(3)CF(3))(2)·H(2)O and 1 on a 1:1 metal/ligand ratio in CH(3)CN as shown by (1)H NMR, microanalysis, and ESMS. Reacting the Zn(II) salts with 1 on a 2:1 metal/ligand ratio gave the linear complexes [Zn(2)1(H(2)O)(4)](SO(3)CF(3))(4)·C(2)H(5)O (7) and [Zn(2)1(BF(4))(H(2)O)(2)(CH(3)CN)](BF(4))(3)·H(2)O (8). (1)H NMR studies showed the Zn(II) and Pb(II) ions in these linear complexes were labile undergoing metal ion exchange. All of the complexes exhibited pym-hyz linkages in their cisoid conformation and binding between the hydroxymethyl arms and the metal ions. No complexes were isolated from reacting either of the Zn(II) salts with 1 on a 1:1 metal/ligand ratio, due to the smaller size of the Zn(II) coordination sphere as compared to the much larger Pb(II) ions.  相似文献   

8.
The previously reported triphosphino/trithiolato-ruthenium anion, [tris-(2-diphenylphosphinothia-phenolato)ruthenium(II)](-), [Ru(DPPBT)(3)](-), has been isolated as the PPN salt (PPN = bis(triphenylphosphoranylidene) ammonium), 1, from chlorobenzene/ether as light-orange crystalline plates, and the X-ray crystal structure has been determined. In dichloromethane, the cis positioned thiolates are alkylated by solvent yielding the methylene-bridged triphosphino/dithioether/thiolato complex [(bis-(2-diphenylphosphinothiaphenolato)methane)(2-diphenyl-phosphinothiaphenolato)ruthenium(II)]chloride, [Ru((DPPBT)(2)CH(2))(DPPBT)]Cl (2). Dichloromethane solutions of 1 layered with hexanes yield 2 as orange cubes. The ruthenium-sulfur bond distances in the alkylated, thioether product are slightly shorter than in the thiolate precursor. Within 2, the iron-thioether bond distances are comparable to the iron-thiolate distances.  相似文献   

9.
The reaction of PbBr(2) with the lithium reagents LiC(6)H(3)-2,6-(C(6)H(3)-2,6-Pr(i)(2))(2) (LiArPr(i)(2)) and Et(2)O.LiC(6)H(3)-2,6-(2,6-Pr(i)-4-Bu(t)C(6)H(2))(2) (Et(2)O.LiArPr(i)(2)Bu(t)) furnished the bromide bridged organolead(II) halides [Pb(mu-Br)ArPr(i)(2)](2) (1) and[Pb(mu-Br)ArPr(i)(2)Bu(t)](2) (2) as orange crystals. Treatment of 1 with a stoichiometric amount of methylmagnesium bromide resulted in the "diplumbene" Pr(i)(2)Ar(Me)PbPb(Me)ArPr(i)(2) (3). The addition of 1 equiv of 4-tert-butylphenylmagnesium bromide to 1 afforded the feebly associated, Pb-Pb bonded species [Pb(C(6)H(4)-4-Bu(t))ArPr(i)(2)](2) (4), whereas the corresponding reaction of tert-butylmagnesium chloride and 1 afforded the monomer Pb(Bu(t))ArPr(i)(2) (5). The reaction of the more crowded aryl lead(II) bromide [Pb(mu-Br)ArPr(i)(3)](2) (Ar = C(6)H(3)-2,6(C(6)H(2)-2,4,6-Pr(i)(3))(2)) with 4-isopropyl-benzylmagnesium bromide or LiSi(SiMe(3))(3) yielded the monomers 6, [Pb(CH(2)C(6)H(4)-4-Pr(i))ArPr(i)(3)], or 7, [Pb(Si(SiMe(3))(3))ArPr(i)(3)]. All compounds were characterized with use of X-ray crystallography, (1)H, (13)C, and (207)Pb NMR (3-7), and UV-vis spectroscopy. The dimeric Pb-Pb bonded (Pb-Pb = 3.1601(6) A) structure of 3 may be contrasted with the previously reported monomeric structure of Pb(Me)ArPr(i)(3), which differs from 3 only in that it has para Pr(i) substituents on the flanking aryl rings. The presence of these groups is sufficient to prevent the weak Pb-Pb bonding seen in 3. The dimer 4 displays a Pb-Pb distance of 3.947(1) A, which indicates a very weak lead-lead interaction, and it is possible that this close approach could be caused by packing effects. The monomeric structures of 6 and 7 are attributable to steric effects and, in particular, to the large size of ArPr(i)(3).  相似文献   

10.
The miscellaneously substituted silyltellanes tBu(2)PhSiTeSiMe(3) (1) and (Me(3)Si)(3)SiTeSiMe(3) were used to synthesize the cyclic tin(II) and lead(II) tellurolates [(tBu(2)PhSiTe)(4)M(2)] (M = Sn (2), Pb (3)), [tBu(2)PhSiTePbC(SiMe(3))(3)](2) (4) and the uncommon cluster compound [{(Me(3)Si)(3)SiTe}(4)Te(2)Sn(4)] (5).  相似文献   

11.
The donor-functionalised alkoxides [Et(2)Ga(OR)](2)(R = CH(2)CH(2)NMe(2)(1), CH(CH(2)NMe(2))(2)(2), CH(2)CH(2)OMe (3), CH(CH(3))CH(2)NMe(2)(4), C(CH(3))(2)CH(2)OMe (5)) were synthesised by the 1:1 reaction of Et(3)Ga with ROH in hexane or dichloromethane at room temperature. Reaction of Et(3)Ga with excess ROH in refluxing toluene resulted in the isolation of a 1:1 mixture of [Et(2)Ga(OR)](2) and the ethylgallium bisalkoxide [EtGa(OR)(2)](R = CH(2)CH(2)NMe(2)(6) or CH(CH(3))CH(2)NMe(2)(7)). X-ray crystallography showed that compound 6 is monomeric and this complex represents the first structurally characterised monomeric gallium bisalkoxide. Homoleptic gallium trisalkoxides [Ga(OR)(3)](2) were prepared by the 1:6 reaction of [Ga(NMe(2))(3)](2) with ROH (R = CH(2)CH(2)NMe(2)(8), CH(CH(3))CH(2)NMe(2)(9), C(CH(3))(2)CH(2)OMe (10)). The decomposition of compounds 1, 4, 5 and 8 were studied by thermal gravimetric analysis. Low pressure CVD of 1 and 5 resulted in the formation of thin films of crystalline Ga(2)O(3).  相似文献   

12.
The reaction of 1:1 stoichiometries (1:1.5 for the nitrate/tetraethylene glycol (EO4) and pentaethylene glycol (EO5) complexes) of PbX(2) (X = NO(3), Br) with five- to eight-donor poly(ethylene glycols) (PEGs) in 3:1 CH(3)CN/CH(3)OH (CH(3)CN only for the nitrate/EO5 complex) followed by solvent evaporation resulted in six crystalline materials upon which X-ray structural analyses were carried out: [Pb(NO(3))(2)(EO4)](n)(), [Pb(NO(3))(2)(EO5)], [Pb(NO(3))(2)(EO6)], [PbBr(EO5)(&mgr;-Br)PbBr(2)].H(2)O, [PbBr(NCMe)(EO6)](2)[PbBr(2)(EO6)][PbBr(3)](2), and [PbBr(EO7)][PbBr(3)]. The nitrates crystallize as tight ion pairs with the PEG ligands coordinating in an equatorial plane around the Pb(2+) ions. Because EO4 has only five oxygen donors, this complex exhibits steric unsaturation which is overcome by a monodentate interaction with a third nitrate anion that is also coordinated to a neighboring Pb(2+) ion. The six donors of EO5 coordinate in an equatorial plane resulting in a 10-coordinate complex with trans, twisted, bidentate nitrate anions. The seven-donor hexaethylene glycol (EO6) only uses six of its oxygen donors to coordinate Pb(2+). [Pb(NO(3))(2)(EO4)](n)() is monoclinic, P2(1)/c, with a = 7.902(3) ?, b = 22.136(6) ?, c = 8.910(2) ?, beta = 90.96(3) degrees, and Z = 4. [Pb(NO(3))(2)(EO5)] is triclinic P&onemacr;, with a = 9.332(3) ?, b = 10.025(3) ?, c = 11.688(4) ?, alpha = 68.41(3) degrees, beta = 68.39(3) degrees, gamma = 68.58(3) degrees, and Z = 2. [Pb(NO(3))(2)(EO6)] is monoclinic P2(1)/c, with a = 16.289(4) ?, b = 10.773(4) ?, c = 12.329(4) ?, beta = 106.77(2) degrees, and Z = 4. Lead(II) bromide complexes with PEGs tend to crystallize as PEG complexed cations with polymeric lead(II) bromide anions. In the EO5 complex, bromide anions in the polymer also coordinate to the PEG-wrapped Pb(2+) cations. The hexa- and heptaethylene glycol (EO6 and EO7, respectively) complexes contain discreet ions. In these halide complexes, EO7 is the only PEG to expand the Pb(2+) coordination number from eight to nine. [PbBr(EO5)(&mgr;-Br)PbBr(2)].H(2)O is triclinic P&onemacr;, with a = 7.922(6) ?,b = 15.802(9) ?, c = 19.001(9) ?, alpha = 73.19(8) degrees, beta = 88.91(9) degrees, gamma = 87.22(9) degrees, and Z = 4. [PbBr(NCMe)(EO6)](2)[PbBr(2)(EO6)][PbBr(3)](2) is monoclinic P2(1)/c, with a = 14.389(4) ?, b = 31.931(9) ?, c = 8.029(2) ?, beta = 97.76(3) degrees, and Z = 2. [PbBr(EO7)][PbBr(3)] is monoclinic Cc, with a = 13.165(3) ?, b = 24.732(5) ?, c = 8.007(1) ?, beta = 94.58(2) degrees, and Z = 4.  相似文献   

13.
Lehn JS  Hoffman DM 《Inorganic chemistry》2002,41(15):4063-4067
Zirconium amide-iodide complexes were synthesized for possible use as chemical vapor deposition precursors to zirconium nitride films. The series of six complexes Zr(NR(2))(4-n)I(n)(R = Me or Et; n = 1-3) was prepared by reacting ZrI(4) and Zr(NR(2))(4) in hot toluene. X-ray crystallographic analyses were performed for Zr(NMe(2))(3)I, Zr(NEt(2))(2)I(2), and Zr(NEt(2))I(3). In the solid state, Zr(NMe(2))(3)I and Zr(NEt(2))(2)I(2) are the discrete dimers [Zr(NMe(2))(2)I(mu-NMe(2))](2) and [Zr(NEt(2))(2)I(mu-I)](2), and Zr(NEt(2))I(3) is the polymer of dimers ([Zr(NEt(2))I(2)(mu-I)](2))(n). In solution, Zr(NEt(2))(3)I is proposed to be monomeric on the basis of NMR data and a molecular weight determination. The complex Zr(NEt(2))(3)I is the most promising precursor candidate because of its physical properties.  相似文献   

14.
Overlayer thin films of vinylbipyridine (vbpy)-containing Ru and Zn complexes have been formed on top of ruthenium dye complexes adsorbed to TiO(2) by reductive electropolymerization. The goal was to create an efficient, water-stable photoelectrode or electrodes. An adsorbed-[Ru(vbpy)(2)(dcb)](PF(6))(2)/poly-[Ru(vbpy)(3)](PF(6))(2) surface composite displays excellent stability toward dissolution in water, but the added overlayer film greatly decreases incident photon-to-current conversion efficiencies (IPCE) in propylene carbonate with I(3)(-)/I(-) as the carrier couple. An ads-[Ru(vbpy)(2)(dcb)](PF(6))(2)/poly-[Zn(vbpy)(3)](PF(6))(2) composite displays no loss in IPCE compared to ads-[Ru(vbpy)(2)(dcb)](PF(6))(2) but is susceptible to film breakdown in the presence of water by solvolysis and loss of the cross-linking Zn(2+) ions. Success was attained with an ads-[Ru(vbpy)(2)(dcb)](PF(6))(2)/poly-[Ru(vbpy)(2)(dppe)](PF(6))(2) composite. In this case the electropolymerized layer is transparent in the visible. The composite electrode is stable in water, the IPCE in propylene carbonate with I(3)(-)/I(-) is comparable to the adsorbed complex, and a significant IPCE is observed in water with the quinone/hydroquinone carrier couple. The assembly [(bpy)(2)(CN)Ru(CN)Ru(vbpy)(2)(NC)Ru(CN)(bpy)(2)](PF(6))(2) ([Ru(CN)Ru(NC)Ru](PF(6))(2)) adsorbs spontaneously on TiO(2), and electropolymerization of thin layers of the assembly to give ads-[Ru(CN)Ru(NC)Ru](PF(6))(2)/poly-[Ru(CN)Ru(NC)Ru](PF(6))(2) enhances IPCE and has no deleterious effect on the IPCE/Ru.  相似文献   

15.
The surface chemistry of a series of well-defined metalorganic ferrous and ferric iron complexes on periodic mesoporous silica (PMS) was investigated. In addition to literature known Fe(II)[N(SiMe(3))(2)](2)(THF), Fe(II)[N(SiPh(2)Me(2))(2)](2), and Fe(III)[N(SiMe(3))(2)](2)Cl(THF), the new complexes [Fe(II){N(SiHMe(2))(2)}(2)](2) and Fe(III)[N(SiHMe(2))(2)](3)(μ-Cl)Li(THF)(3) were employed as grafting precursors. Selection criteria for the molecular precursors were the molecular size (monoiron versus diiron species), the oxidation state of the iron center (II versus III), and the functionality of the silylamido ligand (e.g., built-in spectroscopic probes). Hexagonal channel-like MCM-41 and cubic cage-like SBA-1 were chosen as two distinct PMS materials. The highest iron load (12.8 wt %) was obtained for hybrid material [Fe(II){N(SiHMe(2))(2)}(2)](2)@MCM-41 upon stirring the reaction mixture iron silylamide/PMS/n-hexane for 18 h at ambient temperature. Size-selective grafting and concomitantly extensive surface silylation were found to be prominent for cage-like SBA-1. Here, the surface metalation is governed by the type of iron precursor, the pore size, the reaction time, and the solvent. The formation of surface-attached iron-ligand species is discussed on the basis of diffuse reflectance infrared Fourier transform (DRIFT) and electron paramagnetic resonance (EPR) spectroscopy, nitrogen physisorption, and elemental analysis.  相似文献   

16.
We are using the coordinating anions tetrakis(imidazolyl)borate and tetrakis(4-methylimidazolyl)borate to construct new metal-organic framework structures. In this report, we are exploring materials similar in composition to the previously reported layered network structure Pb[B(Im)(4)](NO(3))(nH(2)O). The metal in this compound can be replaced with isoelectronic Tl(I), affording Tl[B(Im)(4)], and the borate can be modified by using 4-methylimidazole, resulting in Pb[B(4-MeIm)(4)](NO(3)) and Tl[B(4-MeIm)(4)]. Like the parent Pb[B(Im)(4)](NO(3))(nH(2)O), Tl[B(Im)(4)] and Tl[B(4-MeIm)(4)] are layered network structures but both lack anions or solvent molecules in the interlayer spacing. The material Pb[B(4-MeIm)(4)](NO(3)), however, exhibits a 3D network structure that lacks an open topology, resulting from the increased stereochemical activity (greater steric bulk toward other ligands) of the 4-methylimidazole ring. Both of the Tl(I) solids display longer M-N bonds than observed in the analogous Pb(II) compounds; these lengths account for the decreased effect of the stereochemical activity of the 4-methylimidazole ring in Tl[B(4-MeIm)(4)].  相似文献   

17.
Four bis-tetradentate N(4)-substituted-3,5-{bis[bis-N-(2-pyridinemethyl)]aminomethyl}-4H-1,2,4-triazole ligands, L(Tz1)-L(Tz4), differing only in the triazole N(4) substituent R (where R is amino, pyrrolyl, phenyl, or 4-tertbutylphenyl, respectively) have been synthesized, characterized, and reacted with M(II)(BF(4))(2)·6H(2)O (M(II) = Cu, Ni or Co) and Co(SCN)(2). Experiments using all 16 possible combinations of metal salt and L(TzR) were carried out: 14 pure complexes were obtained, 11 of which are dinuclear, while the other three are tetranuclear. The dinuclear complexes include two copper(II) complexes, [Cu(II)(2)(L(Tz2))(H(2)O)(4)](BF(4))(4) (2), [Cu(II)(2)(L(Tz4))(BF(4))(2)](BF(4))(2) (4); two nickel(II) complexes, [Ni(II)(2)(L(Tz1))(H(2)O)(3)(CH(3)CN)](BF(4))(4)·0.5(CH(3)CN) (5) and [Ni(II)(2)(L(Tz4))(H(2)O)(4)](BF(4))(4)·H(2)O (8); and seven cobalt(II) complexes, [Co(II)(2)(L(Tz1))(μ-BF(4))](BF(4))(3)·H(2)O (9), [Co(II)(2)(L(Tz2))(μ-BF(4))](BF(4))(3)·2H(2)O (10), [Co(II)(2)(L(Tz3))(H(2)O)(2)](BF(4))(4) (11), [Co(II)(2)(L(Tz4))(μ-BF(4))](BF(4))(3)·3H(2)O (12), [Co(II)(2)(L(Tz1))(SCN)(4)]·3H(2)O (13), [Co(II)(2)(L(Tz2))(SCN)(4)]·2H(2)O (14), and [Co(II)(2)(L(Tz3))(SCN)(4)]·H(2)O (15). The tetranuclear complexes are [Cu(II)(4)(L(Tz1))(2)(H(2)O)(2)(BF(4))(2)](BF(4))(6) (1), [Cu(II)(4)(L(Tz3))(2)(H(2)O)(2)(μ-F)(2)](BF(4))(6)·0.5H(2)O (3), and [Ni(II)(4)(L(Tz3))(2)(H(2)O)(4)(μ-F(2))](BF(4))(6)·6.5H(2)O (7). Single crystal X-ray structure determinations revealed different solvent content from that found by microanalysis of the bulk sample after drying under a vacuum and confirmed that 5', 8', 9', 11', 12', and 15' are dinuclear while 1' and 7' are tetranuclear. As expected, magnetic measurements showed that weak antiferromagnetic intracomplex interactions are present in 1, 2, 4, 7, and 8, stabilizing a singlet spin ground state. All seven of the dinuclear cobalt(II) complexes, 9-15, have similar magnetic behavior and remain in the [HS-HS] state between 300 and 1.8 K.  相似文献   

18.
Four new lead(II) or bismuth(III) selenites and a tellurite, namely, Pb(3)(TeO(3))Cl(4), Pb(3)(SeO(3))(2)Br(2), Pb(2)Cd(3)(SeO(3))(4)I(2)(H(2)O), Pb(2)Ge(SeO(3))(4) and BiFe(SeO(3))(3), have been prepared and structurally characterized by single crystal X-ray diffraction (XRD) analyses. These compounds exhibit five different types of structures. The structure of Pb(3)(TeO(3))Cl(4) features a three-dimensional (3D) lead(II) chloride network with tellurite anions filling in the 1D tunnels of Pb(4) 4-member rings (MRs) along the c-axis. Pb(3)(SeO(3))(2)Br(2) contains a 3D network composed of lead(II) selenite layers interconnected by bromide anions. Pb(2)Cd(3)(SeO(3))(4)I(2)(H(2)O) is a 3D structure based on 2D cadmium(II) selenite layers which are further connected by 1D lead(II) iodide ladder chains with lattice water molecules located at the 1D tunnels of the structure. Pb(2)Ge(SeO(3))(4) features a 3D framework constructed by the alternate arrangement of lead(II) selenite layers and germanium(iv) selenite layers in the [100] direction. The structure of BiFe(SeO(3))(3) is built on the 3D anionic framework of ion(III) selenite with the bismuth(III) ions located at its Fe(6)Se(6) 12-MR tunnels. Pb(3)(TeO(3))Cl(4) (Pna2(1)) is polar and BiFe(SeO(3))(3) (P2(1)2(1)2(1)) is noncentrosymmetric. Powder second-harmonic generation (SHG) measurements using 1064 nm radiation indicate that BiFe(SeO(3))(3) exhibits a weak SHG efficiency of about 0.2 × KH(2)PO(4) (KDP). Magnetic property measurements for BiFe(SeO(3))(3) show a dominant antiferromagnetic interaction with weak spin-canting at low temperatures. IR, UV-vis and thermogravimetric, as well as electronic structure calculations were also performed.  相似文献   

19.
Polyelectrolyte multilayer thin films were prepared by an alternate deposition of poly(allylamine hydrochloride) (PAH) and anionic polysaccharides {carboxymethylcellulose (CMC) and alginic acid (AGA)} on the surface of a gold (Au) disk electrode, and the binding of ferricyanide [Fe(CN)(6)](3)(-) and hexaammine ruthenium ions [Ru(NH(3))(6)](3+) to the films was evaluated. Poly(acrylic acid) (PAA) was also employed as a reference polyanion bearing carboxylate side chains. A quartz-crystal microbalance study showed that PAH-CMC and PAH-AGA multilayer films grow exponentially as the number of depositions increases. The thicknesses of five bilayers of (PAH-CMC)(5) and (PAH-AGA)(5) films were estimated to be 150 +/- 20 and 90 +/- 15 nm, respectively, in the dry state. The PAH/polysaccharide multilayer film-coated Au electrodes exhibited a redox response to the [Fe(CN)(6)](3)(-) ion dissolved in solution, irrespective of the sign of the surface charge of the film, suggesting the high permeability of the films to the [Fe(CN)(6)](3)(-) ion. In contrast, the PAH-PAA film-coated Au electrodes exhibited a redox response only when the outermost surface of the film was covered with a positively charged PAH layer. However, the permeation of the [Ru(NH(3))(6)](3+) cation was severely suppressed for all of the multilayer films. It was possible to confine the [Fe(CN)(6)](3)(-) ion in the films by immersing the film-coated electrodes in a 1 mM [Fe(CN)(6)](3)(-) solution for 15 min. Thus, the [Fe(CN)(6)](3)(-)-confined electrodes exhibited a cyclic voltammetric response in the [Fe(CN)(6)](3)(-) ion-free buffer solution. The loading of the [Fe(CN)(6)](3)(-) ion in the films was higher when the surface charge of the film was positive and increased with increasing film thickness. It was also found that the [Fe(CN)(6)](3)(-) ion confined in the films serves as an electrocatalyst that oxidizes ascorbic acid in solution.  相似文献   

20.
Four novel mixed metal selenites or tellurites containing PdO(4) squares, namely, BaPd(SeO(3))(2), Bi(2)Pd(SeO(3))(4), and Pb(2)Pd(QO(3))(2)Cl(2) (Q = Se, Te), have been prepared and structurally characterized by single crystal X-ray diffraction analyses. These compounds exhibit three different types of anionic structures. BaPd(SeO(3))(2) contains one-dimensional (1D) [Pd(SeO(3))(2)](2-) anionic chains composed of PdO(4) units linked by SeO(3)(2-) groups in a bidentate bridging fashion. Bi(2)Pd(SeO(3))(4) exhibits a complicated 3D architecture constructed by [Bi(SeO(3))](+) and [Pd(SeO(3))(2)](2-) layers that are alternating along the a-axis. The [Pd(SeO(3))(2)](2-) layers are composed of Pd(2+) ions bridged by SeO(3)(2-) anions in a bidentate fashion. Pb(2)Pd(QO(3))(2)Cl(2) (Q = Se, Te) features zero-dimensional (0D) [Pd(QO(3))Cl(2)](4-) (Q = Se, Te) anionic clusters, which are further bridged by Pb(2+) cations into a 3D network. The results of optical diffuse-reflectance spectrum measurements and band structure calculations based on DFT methods indicate that all the compounds are wide-band-gap semiconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号