首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C Kim  JH Bang  YE Kim  SH Lee  JY Kang 《Lab on a chip》2012,12(20):4135-4142
This paper proposes a new cytotoxicity assay in a microfluidic device with microwells and a distributive microfluidic channel network for the formation of cancer cell spheroids. The assay can generate rapid and uniform cell clusters in microwells and test in situ cytotoxicity of anticancer drugs including sequential drug treatments, long term culture of spheroids and cell viability assays. Inlet ports are connected to the microwells by a hydraulic resistance network. This uniform distribution of cell suspensions results in regular spheroid dimensions. Injected cancer cells were trapped in microwells, and aggregated into tumor spheroids within 3 days. A cytotoxicity test of the spheroids in microwells was subsequently processed in the same device without the extraction of cells. The in situ cytotoxicity assay of tumor spheroids in microwells was comparable with the MTT assay on hanging drop spheroids using a conventional 96-well plate. It was observed that the inhibition rate of the spheroids was less than that in the 2D culture dish and the effect on tumor spheroids was different depending on the anticancer drug. This device could provide a convenient in situ assay tool to assess the cytotoxicity of anticancer drugs on tumor spheroids, offering more information than the conventional 2D culture plate.  相似文献   

2.
Microcarrier‐based stem cell expansion cultures can increase the dimensions of in vitro stem cell cultures from 2D to 3D. The culture handling process then becomes more efficient compared with conventional 2D cultures. However, the use of spherical plastic microcarriers complicates the monitoring of cell culture. To facilitate monitoring, transparent disc‐shaped microcarriers are manufactured using a light‐initiated microfluidic printing system and the obtained microcarriers are named as 2.5D microcarrier. The 2.5D microcarriers (diameter/height ≈ 5) enable us to use conventional monitoring tools in 2D‐based platform during the in vitro expansion on a 3D culture platform. Surface modification via a 1 h‐long poly‐dopamine (PDA) reaction can maintain the transparent nature of the microcarriers while optimizing the cell attachment. The surface marker expression and differentiation potential of the 2.5D microcarrier‐expanded stem cells reveal that the characteristics and functionalities preserved during expansion. The 2.5D microcarrier is readily integrated into an on‐bead assay to conserve reagents and permit a high number (n = 9) of repeated measurements with reliable results. These results demonstrate that the 2.5D microcarrier‐based scale‐up culture provides a valuable tool for the in vitro expansion of adherent stem cells, especially if repetitive monitoring is required.  相似文献   

3.
4.
江润生  张立鹏 《化学通报》2016,79(9):793-792
表面张力是流体重要的物理性质,测定液体表面张力的方法通常包括毛细管上升法、最大气泡压力法、吊环法/吊片法、滴重法/滴体积法、旋滴法和悬滴法。本文综述了测定界面处表(界)面张力和表面压力的方法,详细介绍了基于最大拉力法(Whilhemy吊片法)改进的表面张力测试技术(Du Noüy-Padday),并且概述了这一技术近些年在生物研究、药物研发以及环境监测等领域方面的最新应用。  相似文献   

5.
We present a method that allows patterning cells and shear flow conditions for endothelial cell based assays. This method is novel in combining (1) cell culture on the surface of a substrate both topographically and chemically patterned; (2) multi-shear flow assays after covering the cell substrate with a microfluidic cover plate containing microchannels of different channel widths, and (3) conventional immunostaining assays after removal of the cover plate. This method has the advantage of performing cell cultures and immunoassays in standard cell biology environments with open access, facilitating the formation of confluent cell layers and the observation of cell responses to shear-flow and drug stimulations. To obtain multi-shear stress conditions, a single channel with stepwise increasing channel widths was patterned on the surfaces of both the substrate and the microfluidic cover plate. As results, we observed excellent viability of endothelial cells in the whole range of applied shear stresses (0-25 dyn cm(-2)) and shear stress dependent cytoskeleton remoulding, activation of von Willebrand factor (vWF), and re-organisation of angiogenesis factors such as tetra peptide acetyl-Ser-Asp-Lys-Pro (AcSDKP) of endothelial cells. To validate this approach for drug analysis, we also studied drug effects under shear stress conditions. Our results indicate that the drug effect of combretastatin A-4, an anti-tumour vascular targeting drug, could be significantly enhanced under shear flow conditions.  相似文献   

6.
Self-assembly of a covalently-bound lipophilic drug to a dendronic scaffold for making organic nanoparticles is reported as a proof of concept in nanovectorization. A minimalist structural approach with a small PEG-dendron conjugated to paclitaxel (PTX), incorporating safe succinic and gallic acids, is efficient to provide the expected anticancer bioactivity, but also significantly retards and targets intracellular delivery of PTX in 2D and 3D lung cancer cell cultures. A branching effect of dendrons is crucial, when compared to linear PTX conjugates. Transmission electron microscopy (TEM) and dynamic light-scattering (DLS) studies indicate the formation of stable, low-disperse nanoparticles at 10−5 m in H20, which could also be responsible for the biological effects. An ultrasensitive LC-MS/MS method was used for the determination of intracellular PTX concentration over time, along with the survival rates of cancer cells. Similarly, cell survival assays were successfully correlated to a 3D cell culture with spheroids for mimicking tumors, when treated with PTX conjugates. Our work opens the way to a full evaluation program required for new chemical entities.  相似文献   

7.
Mammalian cells cultured on 2D surfaces in microfluidic channels are increasingly used in drug development and biological research applications. These systems would have more biological or clinical relevance if the cells exhibit 3D phenotypes similar to the cells in vivo. We have developed a microfluidic channel based system that allows cells to be perfusion-cultured in 3D by supporting them with adequate 3D cell-cell and cell-matrix interactions. The maximal cell-cell interaction was achieved by perfusion-seeding cells through an array of micropillars; and 3D cell-matrix interactions were achieved by a polyelectrolyte complex coacervation process to form a thin layer of matrix conforming to the 3D cell shapes. Carcinoma cell lines (HepG2, MCF7), primary differentiated (hepatocytes) and primary progenitor cells (bone marrow mesenchymal stem cells) were perfusion-cultured for 72 hours to 1 week in the microfluidic channel, which preserved their 3D cyto-architecture and cell-specific functions or differentiation competence. This transparent 3D microfluidic channel-based cell culture system also allows direct optical monitoring of cellular events for a wide range of applications.  相似文献   

8.
A common method of three-dimensional (3D) cell cultures is embedding single cells in Matrigel. Separated cells in Matrigel migrate or grow to form spheroids but lack cell-to-cell interaction, which causes difficulty or delay in forming mature spheroids. To address this issue, we proposed a 3D aggregated spheroid model (ASM) to create large single spheroids by aggregating cells in Matrigel attached to the surface of 96-pillar plates. Before gelling the Matrigel, we placed the pillar inserts into blank wells where gravity allowed the cells to gather at the curved end. In a drug screening assay, the ASM with Hepatocellular carcinoma (HCC) cell lines showed higher drug resistance compared to both a conventional spheroid model (CSM) and a two-dimensional (2D) cell culture model. With protein expression, cytokine activation, and penetration analysis, the ASM showed higher expression of cancer markers associated with proliferation (p-AKT, p-Erk), tight junction formation (Fibronectin, ZO-1, Occludin), and epithelial cell identity (E-cadherin) in HCC cells. Furthermore, cytokine factors were increased, which were associated with immune cell recruitment/activation (MIF-3α), extracellular matrix regulation (TIMP-2), cancer interaction (IL-8, TGF-β2), and angiogenesis regulation (VEGF-A). Compared to CSM, the ASM also showed limited drug penetration in doxorubicin, which appears in tissues in vivo. Thus, the proposed ASM better recapitulated the tumor microenvironment and can provide for more instructive data during in vitro drug screening assays of tumor cells and improved prediction of efficacious drugs in HCC patients.  相似文献   

9.
Hydrogels possess several physical and chemical properties suitable for engineering cellular environments for biomedical applications. Despite recent advances in hydrogel systems for cell culture, it is still a significant challenge to independently control the mechanical and diffusional properties of hydrogels, both of which are well known to influence various cell behaviors when using hydrogels as 3D cell culture systems. Controlling the crosslinking density of a hydrogel system to tune the mechanical properties inevitably affects their diffusional properties, as the crosslinking density and diffusion are often inversely correlated. In this study, a polymeric crosslinker is demonstrated that allows for the adjustment of the degree of substitution of reactive functional groups. By using this polymeric crosslinker, the rigidity of the resulting hydrogel is controlled in a wide range without changing the polymer concentration. Furthermore, their diffusional properties, as characterized by their swelling ratios, pore diameters, and drug release rates, are not significantly affected by the changes in the degree of substitution. 3D cell studies using this hydrogel system successfully demonstrate the varying effects of mechanical properties on different cell types, whereas those in a conventional hydrogel system are more significantly influenced by changes in diffusional properties.  相似文献   

10.
刘晓微  杨海鹰  陆婉珍 《色谱》1997,15(1):22-24
 从速率方程和柱压降两个方面对加芯毛细管填充柱的柱效和渗透性进行了探讨,并详细讨论了柱直径、芯直径、芯根数和柱压降的关系。综合考虑柱压降、板高和拉制柱子时颗粒在柱内的镶嵌状况可知最佳柱型是3芯的毛细管填充柱。  相似文献   

11.
《Electroanalysis》2004,16(3):224-230
The 3′‐azido‐3′‐deoxythymidine (AZT, Zidovudine) is an antiproliferative and virostatic drug widely used in human immunodeficiency virus type 1 (HIV‐1) infection treatment. With respect to side effects of high doses and a short half‐life of AZT, a fast and simple detection method for this agent could be helpful. The aim of our study was to determine AZT levels in natural samples (urine, serum, whole blood, and cell cultures, such as the HaCaT line of keratinocytes) without their mineralization and/or purification, by means of electrochemical methods using hanging mercury drop electrode (HMDE). On this electrode, AZT undergoes irreversible reduction at the peak potential near Ep?1.1 V (vs. Ag/AgCl/3 M KCl). Reduction AZT signals were measured by cyclic voltammetry (CV), differential pulse voltammetry (DPV), square‐wave voltammetry (SWV), and constant current chronopotentiometric stripping analysis (CPSA). In phosphate buffer (pH 8) the SWV yielded the best AZT signal with the detection limit of 1 nM. The determination of AZT concentration in biological materials is affected by electroactive components, such as proteins and DNA. For monitoring the influence of these compounds, AZT reduction was performed in the presence of 10 μg/mL calf thymus ssDNA and/or 100 μg/mL bovine serum albumin. In these cases, the detection limit increased to 0.25 μM. Also studied was the AZT concentration in keratinocyte cells (HaCaT line) during cell cultivation. It has been shown that the SWV may be considered as a useful tool for the determination of AZT concentration in cell cultures, and for monitoring AZT pharmacokinetics.  相似文献   

12.
Self‐assembly of peptide‐based building units into supramolecular nanostructures creates an important class of biomaterials with robust mechanical properties and improved resistance to premature degradation. Yet, upon aggregation, substrate–enzyme interactions are often compromised because of the limited access of macromolecular proteins to the peptide substrate, leading to either a reduction or loss of responsiveness to biomolecular cues. Reported here is the supramolecular design of unsymmetric reverse bolaamphiphiles (RBA) capable of exposing a matrix metalloproteinase (MMP) substrate on the surface of their filamentous assemblies. Upon addition of MMP‐2, these filaments rapidly break into fragments prior to reassembling into spherical micelles. Using 3D cell culture, it is shown that drug release is commensurate with cell density, revealing more effective cell killing when more cancer cells are present. This design platform could serve as a cell‐responsive therapeutic depot for local chemotherapy.  相似文献   

13.
Fucoxanthin (Fx) is a carotenoid derived from marine organisms that exhibits anticancer activities. However, its role as a potential drug adjuvant in breast cancer (BC) treatment is still poorly explored. Firstly, this study investigated the cytotoxic effects of Fx alone and combined with doxorubicin (Dox) and cisplatin (Cis) on a panel of 2D-cultured BC cell lines (MCF7, SKBR3 and MDA-MB-231) and one non-tumoral cell line (MCF12A). Fucoxanthin induced cytotoxicity against all the cell lines and potentiated Dox cytotoxic effects towards the SKBR3 and MDA-MB-231 cells. The combination triggering the highest cytotoxicity (Fx 10 µM + Dox 1 µM in MDA-MB-231) additionally showed significant induction of cell death and genotoxic effects, relative to control. In sequence, the same combination was tested on 3D cultures using a multi-endpoint approach involving bioactivity assays and microscopy techniques. Similar to 2D cultures, the combination of Fx and Dox showed higher cytotoxic effects on 3D cultures compared to the isolated compounds. Furthermore, this combination increased the number of apoptotic cells, decreased cell proliferation, and caused structural and ultrastructural damages on the 3D models. Overall, our findings suggest Fx has potential to become an adjuvant for Dox chemotherapy regimens in BC treatment.  相似文献   

14.
Self-assembly of peptide-based building units into supramolecular nanostructures creates an important class of biomaterials with robust mechanical properties and improved resistance to premature degradation. Yet, upon aggregation, substrate–enzyme interactions are often compromised because of the limited access of macromolecular proteins to the peptide substrate, leading to either a reduction or loss of responsiveness to biomolecular cues. Reported here is the supramolecular design of unsymmetric reverse bolaamphiphiles (RBA) capable of exposing a matrix metalloproteinase (MMP) substrate on the surface of their filamentous assemblies. Upon addition of MMP-2, these filaments rapidly break into fragments prior to reassembling into spherical micelles. Using 3D cell culture, it is shown that drug release is commensurate with cell density, revealing more effective cell killing when more cancer cells are present. This design platform could serve as a cell-responsive therapeutic depot for local chemotherapy.  相似文献   

15.
A comparative electrochemical study of 2,4-dinitrophenol (DNP), albumin and DNP-albumin has been carried out at a hanging mercury drop electrode, in order to use DNP as a universal label in immunoelectrical assays. Several electrochemical techniques have been used. Differential pulse voltammetry has proved to be the most suitable. Wide dynamic linear ranges (more than three orders of magnitude for DNP-albumin) and low detection limits have been achieved (5 x 10(-10)M, 2 x 10(-10)M, 3 x 10(-12)M for DNP, albumin and DNP-albumin, respectively). Good reproducibility has been obtained in all cases (R.S.D. < 2.2%).  相似文献   

16.
研发了一种聚二甲基硅氧烷-纸复合型微流控芯片用于肝癌细胞三维培养.芯片使用明胶处理硝酸纤维素薄膜作为细胞培养基底,以水凝胶网格作为三维培养支撑.结合微通道主动灌流与水凝胶中的被动扩散,模拟体内的流体运输形式实现细胞与外界物质交换.实验结果显示,芯片上的液滴生成以及细胞定位种植简便可靠.连续监测显示肝癌HcpG2细胞在水凝胶微球中增殖形成类似组织的三维结构.细胞增殖动力学分析以及生化检测结果显示了芯片三维培养与二维培养的差别.这种芯片三维细胞培养方法操作简便可靠,仿真度高,适合于肿瘤细胞研究.  相似文献   

17.
In addition to rigidity, matrix composition, and cell shape, dimensionality is now considered an important property of the cell microenvironment which directs cell behavior. However, available tools for cell culture in two-dimensional (2D) versus three-dimensional (3D) environments are difficult to compare, and no tools exist which provide 3D shape control of single cells. We developed polydimethylsiloxane (PDMS) substrates for the culture of single cells in 3D arrays which are compatible with high-resolution microscopy. Cell adhesion was limited to within microwells by passivation of the flat upper surface through 'wet-printing' of a non-fouling polymer and backfilling of the wells with specific adhesive proteins or lipid bilayers. Endothelial cells constrained within microwells were viable, and intracellular features could be imaged with high resolution objectives. Finally, phalloidin staining of actin stress fibers showed that the cytoskeleton of cells in microwells was 3D and not limited to the cell-substrate interface. Thus, microwells can be used to produce microenvironments for large numbers of single cells with 3D shape control and can be added to a repertoire of tools which are ever more sought after for both fundamental biological studies as well as high throughput cell screening assays.  相似文献   

18.
Microfibers have received much attention due to their promise for creating flexible and highly relevant tissue models for use in biomedical applications such as 3D cell culture, tissue modeling, and clinical treatments. A generated tissue or implanted material should mimic the natural microenvironment in terms of structural and mechanical properties as well as cell adhesion, differentiation, and growth rate. Therefore, the mechanical and biological properties of the fibers are of importance. This paper briefly introduces common fiber fabrication approaches, provides examples of polymers used in biomedical applications, and then reviews the methods applied to modify the mechanical and biological properties of fibers fabricated using different approaches for creating a highly controlled microenvironment for cell culturing. It is shown that microfibers are a highly tunable and versatile tool with great promise for creating 3D cell cultures with specific properties.  相似文献   

19.
Ambient mass spectrometry (AMS)‐based techniques are performed under ambient conditions in which the ionization and desorption occur in the open environment allowing the direct analysis of molecules with minimal or no sample preparation. A selected group of AMS techniques demonstrate imaging capabilities that can provide information about the localization of molecules on complex sample surfaces such as biological tissues. 2D, 3D, and multimodal imaging have unlocked an array of applications to systematically address complex problems in many areas of research such as drug monitoring, natural products, forensics, and cancer diagnostics. In the present review, we summarize recent advances in the field with respect to the implementation of new ambient ionization techniques and current applications in the last 5 years. In more detail, we mainly focus on imaging applications in topics related to animal whole bodies and tissues, single cells, cancer diagnostics and biomarkers, microbial cultures and co‐cultures, plant and natural product metabolomics, and forensic applications. Finally, we discuss new areas of research, future perspectives, and the overall direction that the field may take in the years to come.  相似文献   

20.
Pancreatic islet transplantation has emerged as a promising treatment for type‐1 diabetes (T1D); however, its clinical application is still limited by the life‐long use of immunosuppressive drugs, insufficient number of islets to achieve normoglycemia, and large transplantation volume. This paper reports a unique approach for nanothin coating of insulin secreting beta cell aggregates. The coating is based on hydrophobic and covalent interactions between natural acrylate modified cholesterol bearing pullulan (CHPOA) nanogels and MIN6 beta cell aggregates. Beta cell aggregates are prepared as spheroids through hanging drop method, which is optimized with respect to hanging drop volume and initial number of beta cells. These aggregates, defined as pseudoislets, are coated with sequential layers of nanogels and are evaluated as viable and functional for insulin secretion. Coating experiments are carried out using physiologically compatible medium, where pseudoislets are not brought in contact with toxic prepolymer solutions used in existing approaches. This study offers new opportunities through coating of islets with advanced functional materials under completely physiological conditions for clinical translation of cell transplantation technology. The technique developed here will establish a new paradigm for creating tolerable grafts for other chronic diseases such as anemia, cancer, central nervous system (CNS) diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号