首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the aim of searching for promising anode materials for lithium-ion batteries, quantum-chemical modeling of the introduction of lithium into a silicon layer supported by nitrogen-doped silicon carbide at Li: Si ratios of 1: 1, 2: 1, and 3: 1 has been performed by the density functional theory method with inclusion of gradient correction and periodic boundary conditions. It has been demonstrated that the absorption of lithium by silicon is energetically more favorable than the formation of a metal layer on the silicon surface. As the lithium concentration increases, the energy difference decreases; i.e., the introduction of lithium into silicon becomes increasingly less favorable, the network of silicon atoms is broken down into smaller and smaller pieces, while the layer thickness increases threefold.  相似文献   

2.
《Sensors and Actuators》1987,11(2):101-133
The admittance of Pd-thin SiO2Si MOSCAP devices was studied as a function of the following variables: temperature, measurement frequency, oxide preparation conditions, applied gate voltage and ambient atmospheres of 100 ppm hydrogen in nitrogen and pure oxygen. Transient current, capacitance and annealing studies were also conducted for many of these variables. It is shown that hydrogen atoms produced by the catalytic action of the Pd on hydrogen molecules can be injected into the oxide—semiconductor interface where, depending on the choice of oxidation conditions for growing the oxide, they modify the density and capture cross-sections of the hydrogen-induced interfacial states. It is also demonstrated that below 125 °C, the injected hydrogen can be reversibly removed by changing the ambient gas from the H2/N2 mixture to pure oxygen.  相似文献   

3.
The quantum-chemical modeling of the delithiation-induced reorganization of a Li m Si n layer applied to the surface of nitrogen-doped silicon carbide is performed by means of non-empirical molecular dynamics in the frame of the gradient-corrected density functional method with the goal for finding promising anode materials for lithium ion batteries. The ratios Li/Si are considered from 8/3 to 1/4. Partial removal of lithium atoms from the surface of the Li m Si n layer and annealing at a moderate temperature (400 K) is found to recover rapidly (as soon as within 10 ps) the uniform metal distribution over the layer when the ratio Li/Si is at least 3/4. At lower values of this ratio, the equalization slows down dramatically.  相似文献   

4.
In this paper, antireflective TiO2 thin films have been prepared on single crystal silicon, and textured polycrystal silicon by sol–gel route using the dip-coating technique. The thickness and the refractive index of the films have been optimised to obtain low reflexion in the visible region, by controlling both the concentration of the titanium isopropoxide (Ti(iOPr)4), and the annealing temperature. We showed that the use of a TiO2 single layer with a thickness of 64.5 nm, heat-treated at 450 or 300 °C, reduces the reflection on single crystal silicon at a level lower than 3% over the broadband spectral ranges 670–830 nm and 790–1010 nm, respectively. In order to broaden the spectral minimum reflectance as much as possible, we have proposed to texture polycrystal silicon wafers, and to coat these wafers by a TiO2 single layer with a thickness of 73.4 nm. In this case, the reflectance has been reduced from 27 to 13% in the spectral range 460–1000 nm.  相似文献   

5.
Ti-based amorphous alloys produced by ultra-rapid melt cooling represent an excellent option as biomaterials because of their mechanical properties and corrosion resistance. However, complete elimination of toxic elements is affecting the glass-forming ability and amorphous structure could be obtained only for thin ribbons or powders that are subsequently processed by powder metallurgy. Amorphous ribbons of special Ti42Zr40Ta3Si15 alloy, which is completely free of any toxic element, were produced by melt spinning, and the thermostability of resulting material was investigated in order to estimate its ability for further heat processing. Isochronal differential scanning calorimetry (DSC) was used to determine transformation points such as glass transition temperature T g or crystallization temperature T x. The activation energy for crystallization of amorphous phase was calculated based on Kissinger method, using heating rates ranging between 5 and 20 °C min?1. Amorphous structure of resulting ribbon was evidenced by means of X-rays diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM). It was determined that amorphous Ti42Zr40Ta3Si15 alloy has a high activation energy for crystallization, similar to other Ti-based amorphous alloys, which provides good thermal stability for subsequent processing, especially by means of powder metallurgy techniques.  相似文献   

6.
Bombardment of a silicon target in a high vacuum with a molecular beam (mixture of high energy H2+N2, obtained by charge exchange) and a thermal beam of O2 produces on the target a variety of compounds. The target is then bombarded by the same molecular beams which produce, extracted by an electrostatic field at an energy of about 10 keV, molecular ions due to the compounds thus formed. These ions are analysed (electromagnet) to give a primary spectrum of ions according to their mass, which are individually selected and dissociated in a collision cell (same H2+N2 mixture). Mass analysis of the dissociation fragments leads to the identification of silicon clusters (Si)n and of Si–O–N–H derivatives, the fragmentations of which permit a definitive determination of their molecular complexity. Dissociation spectra have thus been obtained for some of the most intense peaks of the primary spectrum, on the one hand, and on the other hand for some peaks of lower intensity but of special interest to us (see below). The composition of the fragments is confirmed by the study of the satellite ions derived from the natural 28, 29 and 30 isotopes of silicon, and by the use of deuterium instead of hydrogen. None of the Si–O–N–H derivatives obtained was apparently known earlier. It is shown that some of these molecules (those ‘of special interest to us’) may be identical with sila-analogues of standard amino acids and of nucleic bases: the fact that their fragmentations are identical with those of the corresponding carbon analogues speaks in favour of a structural identity. However, one cannot yet distinguish between the various possible isomeric arrangements, as none of them has been independently prepared, which excludes a direct comparison with reference samples, and as these isomers might give identical fragments; we hope to be able to resolve this ambiguity later. Anyhow, the substances formed are the most complex molecular silicon derivatives so far produced: e.g. Si2O2NH5, Si3O2NH7, Si4O3NH9, Si4O2N2H4, Si4ON3H5, Si5O3N2H10, Si5O2NH11, corresponding to sila-glycine, sila-alanine, sila-threonine, sila-uracile, sila-cytosine, sila-valine, sila-glutamine, – or isomers. Similar results have been obtained using a silicon dioxide target and high energy molecular beams of hydrogen and of nitrogen, without thermal oxygen, or with a carborundum target. © 2000 Académie des sciences / Éditions scientifiques et médicales Elsevier SASmolecular impact / silicon derivatives / amino-acid silicon analogues  相似文献   

7.
At 2–4·10–5 T, a silicon wafer is the target of a 5–10 keV molecular beam of dinitrogen. The products are extracted by an electric field, and analysed by mass. The ions of this primary spectrum are dissociated in a Kr collision chamber. From the fragments thus obtained, one deduces compositions for the secondary ions, and therefore for the primary products. This is helped by the presence, in silicon, of the isotopes 28Si, 29Si and 30Si. Beside the clusters Sin (n = 1–7), complex molecular species are thus obtained, such as Si5N4+, Si5N4H+, Si5N4H2+. © 2000 Académie des sciences / Éditions scientifiques et médicales Elsevier SASinterstellar dust / interstellar molecules / atomic impact / silicon / nitrogen derivatives  相似文献   

8.
A photometric method for the determination of silicon based on the yellow color of α-silicomolybdic acid is described. The pH must be kept within the range 3.0–3.7, and the equilibrium state is established by beating the solution. Since the color of this modification is remarkably stable and reproducible, a high degree of precision can be attained.  相似文献   

9.
Self-assembled monolayers (SAMs) of thienyl-functionalized n-alkyltrichlorosilane (11-(3-thienyl)undecyltrichlorosilane [TUTS]) have been prepared by adsorption from solution and characterized by using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), contact angle measurements, ellipsometry, and scanning electron microscopy (SEM). Using contact angle and SEM measurements, the film preparation protocol was optimized, resulting in reproducible SAM formation with no adverse deposition of polysiloxane particles. XPS and ellipsometry studies confirmed the existence of SAM formation. AFM results show a smooth and homogeneous SAM, with surface roughness of Ra≤0.2 nm, which is slightly higher than the corresponding values for octadecyltrichlorosilane (OTS) SAMs. Such thiophene-based SAM surfaces can be used for surface-initiated polymerization of thiophene. The resulting formed polythiophene layers at non-compatible surfaces offer some practical applications in manufacturing [W. Plieth, A. Fikus, D. Appelhans, H.-J. Adler, German Patent Application No. 2661977 (1998); D. Appelhans, D. Ferse, H.-J. Adler, A. Fikus, W. Plieth, B. Aldolphi et al., J. Electrochem. Soc. (accepted)].  相似文献   

10.
Journal of Solid State Electrochemistry - In order to solve the energy crisis, energy storage technology needs to be continuously developed. As an energy storage device, the battery is more widely...  相似文献   

11.
A newfangled direct electrochemistry behavior of Cytochrome c (Cyt c) was found on glassy carbon (GC) electrode modified with the silicon dioxide (SiO2) nanoparticles by physical adsorption. A pair of stable and well-defined redox peaks of Cyt c′ quasi-reversible electrochemical reaction were obtained with a heterogeneous electron transfer rate constant of 1.66×10-3 cm/s and a formal potential of 0.069 V (vs. Ag/AgCl) (0.263 V versus NHE) in 0.1 mol/L pH 6.8 PBS. Both the size and the amount of SiO2 nanoparticles could influence the electron transfer between Cyt c and the electrode. Electrostatic interaction which is between the negative nanoparticle surface and positively charged amino acid residues on the Cyt c surface is of importance for the stability and reproducibility toward the direct electron transfer of Cyt c. It is suggested that the modification of SiO2 nanoparticles proposes a novel approach to realize the direct electrochemistry of proteins.  相似文献   

12.
New η(3)-silane σ-complexes [PhBP(Ph)(3)]RuH(η(3)-H(2)SiRR') (RR' = PhMe, Ph(2)) were synthesized. Lewis bases [THF, 4-(dimethylamino)pyridine, and PMe(3)] coordinate to the silicon centers of these complexes to form stable adducts. The base adducts, [PhBP(Ph)(3)]Ru(μ-H)(3)SiRR'(base), feature three nonclassical Ru-H-Si interactions and hexacoordinate silicon centers, as determined by multinuclear NMR spectroscopy, X-ray crystallography, and computational investigations.  相似文献   

13.
Bismuth silicon oxide (Bi12SiO20, BSO) nano crystalline powder was prepared by sol–gel technique using bismuth nitrate and tetraethyl orthosilicate as starting materials. The prepared samples were sintered at various temperatures (750 °C maximum) and characteristic sillenite single cubic phase with crystallite size ~38 nm (calculated from room temperature powder XRD measurements) was realized at 750 °C sintering temperature. SEM analysis showed that the powder contains the nano-sized particles with almost spherical morphology. The observed frequencies in room temperature FTIR spectrum could be assigned to Bi–O, Si–O and Bi–O–Si bonds. The FWHM (full width at half maximum) of the diffraction peaks decreased while the intensity of FTIR absorption lines increased with the increase in the sintering temperature indicating better bond formation and crystallization. The thermograph of the samples recorded in the temperature range 50–1,000 °C showed almost no weight loss after ~575 °C further confirmed the conclusion arrived at from XRD and FTIR analysis. The samples sintered at 750 °C showed about 50% absorbance in 400–600 nm region which was consistent with the pale yellow color of the sample. Broad blue emission centered ~478 nm was observed when excited by 350 nm radiation from a Xe-lamp. The intensity of this broad emission band increased while its FWHM decreased with the increase in sintering temperature. Self-trapped excitons could be responsible for this emission.  相似文献   

14.
A novel axially substituted silicon(IV) phthalocyanine, namely di-pyridyloxy axially substituted silicon(IV) phthalocyanine 2 was synthesized and characterized by UV/vis, IR, elemental analysis, MS as well as 1H NMR spectroscopy. Hydrophobic 2 was encapsulated by amphiphilic triblock copolymer poly[Nε-(benzyloxycarbonyl-lysine]-poly(ethylene glycol)-poly[Nε-(benzyl oxycarbonyl) (PLL(Z)-b-PEG-b-PLL(Z)) to form hydrophobic 2-loaded polymeric complex micelle (PIC) (2-loaded PIC). Atom force microscopy (AFM) image showed that 2-loaded PIC formed a spherical nanocarrier with approximately 35-50 nm in diameter. The fluorescence intensity and lifetime of 2-loaded PIC was significantly enhanced by the incorporation 2 into PIC nanocarrier.  相似文献   

15.
A universal and straightforward method for the preparation of polymer brushes via the formation of Si-C bond on silicon substrates through the UV-induced photopolymerization is demonstrated.  相似文献   

16.
A novel axially substituted silicon(Ⅳ)phthalocyanine,namely di-pyridyloxy axially substituted silicon(Ⅳ)phthalocyanine 2 was synthesized and characterized by UV/vis,IR,elemental analysis,MS as well as ~1H NMR spectroscopy.Hydrophobic 2 was encapsulated by amphiphilic triblock copolymer poly[N~ε-(benzyloxycarbonyl-lysine]-poly(ethylene glycol)-poly[N~ε-(benzyl oxycarbonyl) (PLL(Z)-b-PEG-b-PLL(Z))to form hydrophobic 2-loaded polymeric complex micelle(PIC)(2-loaded PIC).Atom force microscopy(AFM)image showe...  相似文献   

17.
ZnO/porous silicon nanocomposites were fabricated by spin-coating the sol?Cgels of zinc acetate onto the top surface of porous silicon films. The photoluminescent properties of ZnO/porous silicon nanocomposites were investigated as a function of the concentration of zinc cations in the sol?Cgels. Characterizations with scanning electron microscopy, X-ray diffractometry and photospectroscopy indicated that ZnO nanocrystals were embedded into the spongy nanostructures of porous silicon after heat treatment at 245?°C for 20?min in air. The recorded photoluminescence exhibited that orange to green?Cblue emissions were achieved for the ZnO/porous silicon nanocomposites as the concentration of zinc cations in the sol?Cgels increased from 4 to 260?mM. The mechanisms on the tunability of the photoluminescence were discussed for the ZnO/porous silicon nanocomposites. Our results have demonstrated that the incorporation of green?Cblue phosphors into the porous matrix of porous silicon represents one endeavor to tune the photoluminescence of porous silicon across the visible spectral region.  相似文献   

18.
Russian Chemical Bulletin - A new pharmacologically active nanostructured silicon—zinc—boron-containing glycerohydrogel was synthesized by the sol—gel method using silicon, zinc,...  相似文献   

19.
The proton, 13C, and 29Si chemical shifts and the 13C1H coupling constants of a series of compounds of the type (CH3)3SiX were measured and correlated with inductive and resonance σ constants. In order to provide a comparison with a homologous series in which π-bonding is absent, shifts and coupling constants were obtained for the t-butyl series, (CH3)3CX. Only the coupling constants gave significant correlations with σI. A series of σ constants, presumably reflective of the amount of π-bonding, were obtained from the deviations from the J vs. σI plot. The magnitudes of these values indicate that oxygen is a better π-donor than nitrogen and chlorine.  相似文献   

20.
Introduction of a double bond into cyclic silanes lowers the ring strain by the cyclic delocalization of π-electrons through the hyperconjugation with the σ bonds, which is favored by the high π-orbital energy of the SiSi bond and the low σ*-orbital energy of the Si-H bonds. The π-relaxation of strains significantly occurs in the small rings. Unsaturated small silicon ring molecules are less strained than the saturated ones and the unsaturated carbon congeners. We calculated a series of polycyclic silicon molecules to confirm the π-relaxation and suggested that some unknown molecules could be prepared due to the low strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号