首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 143 毫秒
1.
本文测定了298.15 K 下氯化钠、氯化钾在水和水与四种丁醇异构体混合溶剂中的双电池电动势,从电动势值计算了转移自由能,并测定了288.15,308.15,318.15 K下氯化钠、氯化钾在水和水与叔丁醇混合溶剂中的双电池电动势.采用的双电池为:Ag|AgCl|MCl(s)|M(Hg)|MCl(w)|AgCl|Ag(w 为水,s 为含水混合溶剂,M 为 Na、K).采用 Abraham 的离子溶剂化一层连续介质模型,计算了氯化钠、氯化钾在这四种混合溶剂中的溶剂化自由能,其中静电部分采用 Abraham 所给公式计算,非静电部分采用 Pierotti 定标粒子理论计算.在低的醇含量时,转移自由能的计算结果与实验基本符合.此外,根据含叔丁醇体系电动势的温度系数计算得转移熵,对该体系的结构作了定性讨论.  相似文献   

2.
本文应用Corning一价阳离子选择电极与氯离子选择电极组成无液接可逆电池,测定电池在283.15K~318.15K间七个温度下的标准电动势及其温度系数,计算KCl从纯水到相应的DMF-H~2O混合溶剂的标准转移Gibbs自由能ΔG 和标准转移熵ΔS ,得出ΔG 和ΔS 随混合溶剂中DMF的摩尔分数x~DMF及温度T的变化规律.发现KCl的ΔS随x~DMF变化的趋势和NaCl的相反.从离子溶剂化作用及其对溶剂结构的影响作了讨论.  相似文献   

3.
本文应用Corning一价阳离子选择电极与氯离子选择电极组成无液接可逆电池,测定电池在283.15K~318.15K间七个温度下的标准电动势及其温度系数,计算KCl从纯水到相应的DMF-H~2O混合溶剂的标准转移Gibbs自由能ΔG 和标准转移熵ΔS ,得出ΔG 和ΔS 随混合溶剂中DMF的摩尔分数x~DMF及温度T的变化规律.发现KCl的ΔS随x~DMF变化的趋势和NaCl的相反.从离子溶剂化作用及其对溶剂结构的影响作了讨论.  相似文献   

4.
褚德萤  张颖  衣影  刘瑞麟 《化学学报》1988,46(9):848-853
本文应用钠离子玻璃电极及氯离子选择性电极组成无液界可逆电池, 即Cl^-选择电极|NaCl(m), w或s|Na^+玻璃电极测定电池的标准电动势, 计算NaCl从纯水到DMF-H2O混合溶剂的标准转移Gibbs自由能ΔGt°, 测定相应的电池在5℃至45℃九个温度下的电动势温度系数, 求得标准转移熵ΔSt°. 得出ΔGt°及ΔSt°随有机组份含量及温度变化的规律. 对NaCl由纯水至混合溶剂的溶剂化作用的变化, 及DMF和水的液体结构作了讨论.  相似文献   

5.
在恒定1,2-丙二醇摩尔分数X为0.05的混合溶剂中,在5-45℃温度范围内测定无液接电池Pt,H2(1 atm)HCl(ma),1,2-C3H5(OH)2(X),H2O(1-X)|AgCl-Ag(A)和Pt,H2(1 atm)|HCl(ma),NaCl(mb),1,2-C3H5(OH)2(X),H2O(1-X)|AgCl-Ag (B)的电动势.利用电池A的电动势确定混合溶剂中Ag-AgCl电极的标准电极电势,利用电池B的电动势确定了HCl在混合溶剂的多组分电解质溶液中的活度系数γA.指出了在恒定总离子强度下HCl仍然服从Harned规则,在溶液组成恒定时,logγA是温度T的线性函数.HCl的相对偏摩尔焓遵守类似的Harned规则,计算了HCl的一级、二级和总介质效应.  相似文献   

6.
本文在恒定葡萄糖质量百分数x=10%的条件下,应用电动势法测定无液体接界电池(A)和电池(B)的电动势: Pt,H2(1.013X10^5 Pa)|HCl(m),D-Glucose(x),H2O(1-x)|AgCl-Ag Pt,H2(1.013X10^5 Pa)|HCl(mA),NaCl(mA),D-Glucose(x),H2O(1-x)|AgCl-Ag (B) 根据电池(A)电动势确定混合液中的Ag-AgCl电极的标准电极电势,讨论了HCl的迁移性质;利用电池(B)的电动势确定了HCl在该体系中的活度系数γA,结果表明,在恒定总离子强度下,HCl的活度系数服从Harned 规则。在溶液组成恒定时,lgγA是温度倒数1/Τ的线性函数,进一步讨论了混合物中HCl的相对偏摩尔焓,计算了HCl的介质效应。  相似文献   

7.
吕殿祯  王琴萍  石磊 《化学学报》1991,49(8):735-741
本文在恒定葡萄糖质量百分数x=10%的条件下,应用电动势法测定无液体接界电池(A)和电池(B)的电动势: Pt,H2(1.013X10^5 Pa)|HCl(m),D-Glucose(x),H2O(1-x)|AgCl-Ag Pt,H2(1.013X10^5 Pa)|HCl(mA),NaCl(mA),D-Glucose(x),H2O(1-x)|AgCl-Ag (B) 根据电池(A)电动势确定混合液中的Ag-AgCl电极的标准电极电势,讨论了HCl的迁移性质;利用电池(B)的电动势确定了HCl在该体系中的活度系数γA,结果表明,在恒定总离子强度下,HCl的活度系数服从Harned 规则。在溶液组成恒定时,lgγA是温度倒数1/Τ的线性函数,进一步讨论了混合物中HCl的相对偏摩尔焓,计算了HCl的介质效应。  相似文献   

8.
在混合溶剂中恒定乙醇的质量百分数χ=10%, 应用电动势法测定了无液接电池(A)和电池(B)的电动势。根据电池(A)和电池(B)的电动势, 用传统的Debye-Huckel外推法和我们在前文提出的多项式逼近程序, 确定了甘氨酸有278.15-318.15k范围内5个温度下的第一、第二热力学解离常数, 两种方法所得的结果在实验误差范围内一致。并相应计算了该体系的热力学量。  相似文献   

9.
在混合溶剂中恒定乙醇的质量百分数χ=10%, 应用电动势法测定了无液接电池(A)和电池(B)的电动势。根据电池(A)和电池(B)的电动势, 用传统的Debye-Huckel外推法和我们在前文提出的多项式逼近程序, 确定了甘氨酸有278.15-318.15k范围内5个温度下的第一、第二热力学解离常数, 两种方法所得的结果在实验误差范围内一致。并相应计算了该体系的热力学量。  相似文献   

10.
在恒定溶液总离子强度I=1.00mol.kg^-^1, 改变异丙醇在混合溶剂中的摩尔分数x=0.025、0.075和0.100条件下, 测定了无液接界电池(A)和电池(B)的电动势.Pt, H2(1.013x10^5Pa)|HCl(m), i-PrOH(x), H2O(1-x)|AgCl-AgPt, H2(1.013X10^5Pa)|HCl(mA), NaCl(mB), i-PrOH(x), H2O(1-x)AgCl-Ag (B)根据电池(A)的电动势, 确定混合溶剂中Ag-AgCl电极的标准电极电势, 讨论了HCl的迁移性质. 利用电池(B)的电动势, 确定HCl活度系数γA. 结果表明, 在恒定I为1.00mol.kg^-^1时, HCl的活度系数仍然服从Harned规则. 在恒定溶液组成时, lgγA对热力学温度的倒数1/T作图, 具有良好直线关系. 进一步讨论了混合物中HCl的相对偏摩尔焓和HCl的溶剂化数及介质效应.  相似文献   

11.
本文论证了由于Cl^-是硬碱而I^-是软碱根据电解质迁移自由能△Gt^o(MCl)、△Gt^o(MBr)和△Gt^o(MI)作图外推计算单独离子标准迁移自由能△Gt^o(i)的方法是不正确的。提出了根据△Gt^o(MF)和△Gt^o(MCl)的作图外推法, 对于20wt%和40wt%乙醇-水混合溶剂, 所计算的△Gt^o(i)与碱金属氯化物的△Gt^o(MCl)作图歪推法所计算的值比较一致。用离子选择电极电位法系统地测定了△Gt^o(NaX)(X=F^-、Cl^-、Br^-、I^-)、△Gt^o(LiCl)和△Gt^o(HCl)。  相似文献   

12.
洪品杰  伍宗敏 《化学学报》1983,41(11):1065-1066
NF_3和环氧乙烷(C_2H_4O)作为推进剂,曾由Sundaram按刚性转子-谐振子模型计算了其光谱熵.但由于忽略了离心力的影响,必然致使计算结果偏低(尤其在高温下).本文按Kivelson等给出的离心力校正参数τ值与离心力伸长常数D_J、D_(JK)和D_K间的关系式,由微波谱给出的数据计算了C_2H_4O的离心伸长常数(表1).改按非刚性转子—谐振子模型,采用直接加和法重新精确计算转动、振动配分函数,进而在100~2000K范围内计算了NF_3和C_2H_4O的光谱熵(表2).比较了所得结果与Sundaram的计算值  相似文献   

13.
高宏成  KIM  J.I. 《化学学报》1987,45(8):737-743
本文采用活化分析法测定参考解质Ph4AsPh4B晶体在水和有机溶剂中的溶解度和计算了它从水迁移到有机溶剂中的标准迁移Gibbs自由能△^s^wG^0t.根据Ph4AsPh4B假定,求得参考正负离子Ph4As^+和Ph4B^-的标准迁移Gibbs自由能.又通过测定Ph4AsTcO4,CsPh4B,KPh4B和CsTCO4等晶体在水和有机溶剂站的溶解度,求得TcO4^-,K^+,Cs^+等离子的标准迁移自由能,并对结果进行了讨论.  相似文献   

14.
The acid dissociation constants of a wide range of acids in water+acetone mixtures have been combined with values for the free energy of transfer of the proton. ΔG0t(H+ to calculate values for the free energy of transfer of ions which derive only from the charge on the ion. ΔG0t(i)c. As the values of ΔG0t(H+) have been revised, revised values for the total free energies of transfer of cations and anions, ΔG0t(M+) and ΔGot(X-), are given. New data for ΔGot(MXn) is also split into values for ΔG0t(Mn+) (where n=1 and 2) and ΔG0t(X?). These free energies of transfer, both total and those deriving from the charge alone, are compared with similar free energies in other mixtures water+co-solvent. Values for ΔGot(i)c do not conform to a Born-type relationship and show the importance of structural effects in the solvent even when only the transfer of the charge is involved.  相似文献   

15.
Resolution of the activities of solutions of electrolytes into the individual ionic contributions cannot be carried out rigorously and requires the introduction of extrathermodynamic assumptions which have inherent uncertainties. The most commonly used approaches are basically similar in that they are based on the assumed solvent independence of the difference in the enthalpy or Gibbs energy of transfer of pairs of model solutes, e.g., tetraphenylarsonium and tetraphenylborate ions, or ferricinium ion and ferrocene. In this work we follow an alternative approach pioneered by Parsons involving measurement in the jet (Kenrick) cell of outer-potential differences between solutions of the same electrolyte in two solvents. These potential differences provide the real free energies of transfer of individual ions which, in turn, differ from the usual Gibbs energies of transfer by the work required to transfer the ion through the dipolar layers at the two solvent-gas interfaces. One objective of this work was to improve the reliability of real free energy of transfer measurements, which are experimentally demanding, to within ca. ±0.5 kJ-mol–1 in order to match typical uncertainties in Gibbs transfer energies of electrolytes. This goal was met, in most instances, by careful evaluation of experimental parameters (particularly jet pressure). A major improvement over previous measurements was made by adding a supporting electrolyte which allowed stable potentials to be obtained at test electrolyte concentrations as low as 10–4M. Real free energy changes are reported for the transfer of silver ion from water to methanol, ethanol, acetonitrile, propylene carbonate and dimethyl sulfoxide, as well as for the transfer of chloride ion from water to methanol and ethanol. Reliable data of this kind may lead to improved understanding of either the properties of the surfaces of solvents or the interactions of model solutes with solvents, depending on which of the two fields develops most.  相似文献   

16.
The distribution coefficients of nicotinamide (NicNH2) and solubility products of nicotinamide-silver perchlorate were determined by the distribution and solubility methods over a wide range of water-ethanol (EtOH) solvent compositions. The Gibbs energies of transfer of NicNH2 and the AgNicNH 2 + complex cation from water into water-ethanol mixtures were calculated. The influence of H2O-EtOH solvent compositions on the stability of the nicotinamide-Ag+ complex was studied potentiometrically at a 0.25 ionic strength of the medium (NaClO4) and 25.0 ± 0.1°C. The stability of complexes increased as the concentration of ethanol in mixtures grew. Reagent solvation contributions to complex formation equilibrium shifts were analyzed.  相似文献   

17.
The solubilities of NaF and LiF have been measured in mixtures of water with methanol, ethanol, ethylene glycol and acetonitrile over the whole composition range. Gibbs free energies of transfer of the fluoride ion from water to the mixed and pure solvents have been calculated from the solubility data via the tetraphenylarsonium tetraphenylborate assumption. The values so obtained indicate that the fluoride ion is preferentially solvated by water as a result of its strong hydrogen-bonding capabilities. Desolvation of the fluoride ion is especially marked in acetonitrile-rich solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号