首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
HOF.CH3CN, a very efficient oxygen-transfer agent, was reacted with various aliphatic and aromatic vicinal diamino compounds. The products were the rare, vicinal dinitro derivatives formed in excellent yields and short reaction times. This is in contrast to other oxygen-transfer agents which tend to break the central C-C bond of the diamino precursor. This reaction was also used for making dinitro compounds with all four oxygens, being the [18]O isotope.  相似文献   

3.
4.
The HOF.CH3CN complex, readily prepared by passing F2 through aqueous acetonitrile, is an exceptionally efficient oxygen transfer agent. It is unique in its capacity to oxidize various azides into the corresponding nitro derivatives. This method requires short reactions times and room temperature or below, and the desired nitro compounds were usually isolated in very good yields. The respective nitroso derivatives are believed to be the intermediates in this reaction. Functional groups such as aromatic rings, ketones, nitriles, halides, alcohols, and esters are tolerated. Sulfides react with HOF.CH3CN usually at the same rate as azides. Amines and olefins, however, react faster, so they have to be protected first. Nitro derivatives with various oxygen isotopes can be made using the labeled H18OF.CH3CN. In the case of chiral azides the stereochemistry around the nitrogen-bonded carbons is retained.  相似文献   

5.
HOF.CH3CN, a very efficient oxygen-transfer agent, was reacted with various azides to form the corresponding nitro compounds in excellent yields and in very short reaction times. The respective nitroso derivatives were found to be intermediates in this reaction. When the azides were reacted with MCPBA or DMDO, no reaction took place, and the starting materials were fully recovered.  相似文献   

6.
[reaction: see text] HOF.CH(3)CN, a very efficient oxygen-transfer agent, made readily from F(2), H(2)O, and CH(3)CN, was reacted with various 1,10-phenanthroline derivatives to form the corresponding N,N'-dioxides in good yields and short reaction times.  相似文献   

7.
Franck-Condon one-electron oxidation of the stable anions -CH2CN, CH3-CHCN and -CH2CH2CN (in the collision cell of a reverse-sector mass spectrometer) produce the radicals .CH2CN, CH3.CHCN and .CH2CH2CN, which neither rearrange nor decompose during the microsecond duration of the neutralisation-reionisation experiment. Acetonitrile (CH3CN) and propionitrile (CH3CH2CN) are known interstellar molecules and radical abstraction of these could produce energised .CH2CN and CH3.CHCN, which might react with NH2. (a known interstellar radical) on interstellar dust or ice surfaces to form NH2CH2CN and NH2CH(CH3)CN, precursors of the amino acids glycine and alanine.  相似文献   

8.
Enhancement of the Raman scattering and IR absorption activities due to the electron-attachment was investigated for water systems by DFT calculations. DFT calculation of a 6-ring water cluster system that included the diffusive nature of electrons well reproduced the Raman enhancement effects and Raman shifts of the OH stretching modes observed in experiments. Based on the same model and calculations, enhancement of the IR absorption activity was also studied and was found to also be improved. Furthermore, the same calculation revealed that the enhancement can be also expected not only in the OH stretching but also in the lower wavenumber region. The enhancement factors for the various vibrational modes of the OH groups range from 10(2) - 10(5) thanks to the electron addition. Based on the coincidence between the theoretical model and the experimental results for the Raman signals and theoretical prediction for IR absorption, new enhancement techniques based on an electron-attachment in both Raman scattering and IR absorption, denoted as "electron-enhanced vibrational spectroscopy (EEVS)", is proposed, where molecular polarizability itself is modulated by the strong electrostatic field induced by neighboring electrons.  相似文献   

9.
The potential energy surface information of the CH2CO + CN reaction is obtained at the B3LYP/6‐311+G(d,p) level. To gain further mechanistic knowledge, higher‐level single‐point calculations for the stationary points are performed at the QCISD(T)/6‐311++G(d,p) level. The CH2CO + CN reaction proceeds through four possible mechanisms: direct hydrogen abstraction, olefinic carbon addition–elimination, carbonyl carbon addition–elimination, and side oxygen addition–elimination. Our calculations demonstrate that R→IM1→TS3→P3: CH2CN + CO is the energetically favorable channel; however, channel R→IM2→TS4→P4: CH2NC + CO is considerably competitive, especially as the temperature increases (R, IM, TS, and P represent reactant, intermediate, transition state, and product, respectively). The present study may be helpful in probing the mechanism of the CH2CO + CN reaction. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

10.
HOF.CH3CN, a very efficient oxygen-transfer agent made readily from fluorine and aqueous acetonitrile, was reacted with various quinoxaline derivatives to give the corresponding mono N-oxides and especially the N,N'-dioxides in very good yields under mild conditions and short reaction times.  相似文献   

11.
Harel T  Amir E  Rozen S 《Organic letters》2006,8(6):1213-1216
[reaction: see text] Episulfones are quite unstable and difficult to make compounds. HOF.CH(3)CN, a powerful oxygen transfer agent operating under very mild conditions, was successfully employed in converting episulfides to episulfones. Unlike other oxidizing agents, no episulfoxides were formed under standard conditions. Reacting H(18)OF.CH(3)CN with either an episulfide or an episulfoxide leads to the corresponding episulfone with all combinations of oxygen isotopes. Decomposition of such episulfones gives any desirable variation of S(18)O(x)()O (x = 16, 18).  相似文献   

12.
Alpha-alkyl amino acids can be efficiently prepared in high yields from the respective amino acids themselves. The key step is the oxidation of the amine function to create the corresponding alpha-nitro acid in a fast and very high yield reaction followed by phase-transfer alkylation and finally reduction to the desired alpha-alkyl amino acid. Several such acids containing aromatic rings or additional carboxylic groups and acids with steric hindrance at the alpha-position are suitable substrates. Several alkyl halides were examined as alkylating agents.  相似文献   

13.
Details on the reactions of: (1) Pd+ + CH3CHO → PdCO+ + CH4 and (2) Pd+ + CH3CHO → PdH + CH3CO+ in the gas phase were investigated using density functional theory (B3LYP), in conjunction with the LANL2DZ+6‐311+G(d) basis set. Three encounter complexes were located on the potential energy surfaces and the calculations indicated that both the C? C and aldehyde C? H bond activation of acetaldehyde could lead to the dominant demethanation reaction. The charge transfer process for PdH abstraction was caused by an intramolecular PdH rearrangement of the newly found η1‐aldehyde attached complex. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

14.
Using the complete active space self-consistent field (CASSCF) method with 6-311++g(3df,3pd) basis sets, a few electronic states of nitrenes (CH3)3CN and (CH3)2CHN and their positive ions are calculated. All calculated states are valence states, and their characteristics are discussed in detail. In order to investigate the Jahn-Teller effect on (CH3)3CN radical, Cs symmetry was used for (CH3)3CN and (CH3)2CHN in the calculations. The results of our calculations (CASPT2 adiabatic excitation energies and RASSI oscillator strengths) suggest that the calculated transitions of (CH3)3CN at 27,710 cm(-1) and (CH3)2CHN at 28,110 cm(-1) are attributed to 23A' --> 13A', while those of (CH3)3CN at 28,916 cm(-1) and (CH3)2CHN at 29,316 cm(-1) are attributed to 13A' --> 13A'. The vertical and adiabatic ionization energies were obtained to compare with the photoelectron spectroscopic data. These results are in agreement with previous experimental data. Also, we present a comprehensive review on the CAS calculation results for (CH3)nCH(3-n)N (n = 0-3) presented in our previous and present papers.  相似文献   

15.
All species involved in the multi-channel decomposition reaction of CH(3)OF have been investigated using density functional theory. The molecular geometries for various species are optimized employing B3LYP method implementing 6-311++G** basis set. The potential energy surface is drawn out for this reaction. The vibrational mode analysis is used to elucidate the relationships of the transition states, intermediate and the products. The extensive investigation shows that the reaction mechanism is reliable.  相似文献   

16.
Ethyl methanesulfonate, CH3SO2OCH2CH3, is well-known as an alkylating agent in mutagenic and carcinogenic processes. Its electronic structure and that of the methanesulfonate anion (CH3SO3-) were determined using optimization methods based on density functional theory and Moller-Plesset second-order perturbation theory. For CH3SO2OCH2CH3, two conformations with symmetries C(s) and C1 are obtained, the former being more stable than the latter. Natural bond orbital (NBO) calculations show the C(s) conformation provides a more favorable geometry of the lone pairs of the oxygen atom linking the ethyl group. The NBO technique also reveals the characteristics of the methanesulfonate anion as a leaving group due to the rearrangement of the excess electronic charge after alkylation. Furthermore, the infrared spectra of CH3SO2OCH2CH3 are reported for the liquid and solid states as well as the Raman spectrum of the liquid. Comparison to experiment of the conformationally averaged IR spectrum of C(s) and C1 provides evidence of the predicted conformations in the solid IR spectrum. These experimental data along with the calculated theoretical force constants are used to define a scaled quantum mechanical force field for the target molecule, which allowed the measured frequencies to be reproduced with a final root-mean-square deviation of 9 cm(-1) and, thus, a reliable assignment of the vibrational spectrum.  相似文献   

17.
Potential energy curves of low-lying electronic states of the CN2+ dication and of the electronic ground states of CN+ and the neutral CN molecule were calculated using internally contracted multireference CI and the coupled cluster RCCSD(T) methods. Spectroscopic constants and adiabatic excitation energies of 13 quasibound electronic states of the dication were obtained and the energy of charge stripping of CN+ and double ionization energy of CN were predicted. Tunneling and spin-orbit induced predissociation lifetimes for the vibrational levels in the low-lying electronic states are presented and the metastability of the dication is discussed.  相似文献   

18.
We report Ar-predissociation vibrational spectra of the binary proton-bound hydrates of acetonitrile (AN), AN x H(+) x OH(2) and AN x D(+) x OD(2), in the 600-3800 cm(-1) energy range. This complex was specifically chosen to explore the nature of the intermolecular proton bond when there is a large difference between the electric dipole moments of the two tethered molecules. Sharp, isotope-dependent bands in the vicinity of 1000 cm(-1) are traced to AN x H(+) x OH(2) vibrations involving the parallel displacement of the shared proton along the heavy atom axis, nu(sp)(parallel). These transitions lie much lower in energy than anticipated by a recently reported empirical trend which found the nu(sp)(parallel) fundamentals to be strongly correlated with the difference in proton affinities (DeltaPA) between the two tethered molecules (Roscioli et al., Science, 2007, 316, 249). The different behavior of the AN x H(+) x OH(2) complex is discussed in the context of the recent theoretical prediction (Fridgen, J. Phys. Chem A., 2006, 110, 6122) that a large disparity in dipole moments would lead to such a deviation from the reported (DeltaPA) trend.  相似文献   

19.
The oxidation of organic molecules by hypofluorous acid (HOF) was studied extensively and systematically by Rozen et al. Therefore, it seems appropriate to refer to the process as Rozen oxidation. An entire set of model molecules was selected for quantum chemical investigation of the oxidation mechanism: a C=C double bond in ethylene, sulfur and selenium in dimethyl derivatives, nitrogen and phosphorus in trimethyl derivatives, as well as methyl azides. In the gas phase, van der Waals complexes between HOF and the previously mentioned species easily are formed, but these complexes are reluctant to undergo oxidation. The addition of another HOF molecule connected with the formation of a cyclic complex (i.e., substrate and two molecules of HOF) seems to be decisive for the oxidation process. The attempt to substitute the second HOF molecule with H2O demonstrated the superiority of HOF. Complexes of this kind decompose along the reaction path smoothly (i.e., with a low activation energy) to the respective oxidation product. A potential role of the hydroxyl cation (HO+) in the oxidation step is mentioned. Besides an oxidation product, one HOF molecule is released (an essential feature of catalysis), and furthermore, hydrogen fluoride is formed. It was suggested by Sertchook et al. (J. Phys. Chem. A 2006, 110, 8275) that the interaction between the substrate to be oxidized and HOF is catalytically influenced by the HF molecule. The mechanism suggested here is more feasible and, particularly at the early stages of the oxidation process, decisive. Also, the role of acetonitrile, used as a solvent by Rozen et al., is discussed in terms of a continuum model. Moreover, passing from potential energies to Gibbs energies is considered.  相似文献   

20.
The reaction of vanadium(III) acetylacetonate with HBF4 in acetonitrile yields [(CH3CN)5V-O-V(CH3CN)5][BF4]4, a material that serves as a convenient precursor to other [V-O-V]4+ species such as [(bipy)2(CH3CN)V-O-V(CH3CN)(bipy)2][BF4]4 (bipy=2,2'-bipyridine). Single-crystal X-ray diffraction shows that the V-O-V linkage of [(CH3CN)5V-O-V(CH3CN)5]4+ is linear. An Evans method measurement of the solution-phase magnetic susceptibility indicates strong ferromagnetic coupling between the vanadium centers. Magnetic susceptibility (chi) and magnetization (M(H)) data for a powdered sample and for a single crystal oriented with its V-O-V axis parallel to the applied field were measured over 1.8-300 K. The results suggest that the V(III) centers are ferromagnetically coupled with J approximately 72 K (approximately 50 cm(-1)) yielding a ground state with a total spin Stotal=2. Theoretical fit to the M(H) plot for the single crystal yielded g||=2.01+/-0.01 and the zero-field splitting parameter D=0.60+/-0.04 K (0.42+/-0.03 cm(-1)). EPR measurements at 34 and 101.6 GHz are consistent with the Stotal=2 ground state and yield g||=1.9825, g perpendicular=1.9725 and D=0.57+/-0.03 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号